À¯Çϸ² Ä¿¸®Å§·³¡±ÀÇ ÃàÀº Å©°Ô µÎ °¡Áö°¡ ÀÖ´Ù. ±³°ú ´ëºñ¿Í ½ÃÇè ´ëºñ°¡ Àִµ¥, ±³°ú ´ëºñ °ü·ÃÇÑ ±³Àç´Â ÀÌ¹Ì 4±ÇÀ» ÃâÆÇÇÏ¿´°í, SAT Math Level 2¸¦ ÁغñÇϱâ À§ÇÑ ±³Àç·Î 5¹ø° Ã¥À» ÃâÆÇÇÏ¿´À¸³ª, ÀÌ Ã¥ÀÌ °æ½Ã¼öÇÐÀ» ´ëºñÇÏ´Â ±× ù°ÉÀ½ÀÌ µÇ´Â Ã¥ÀÌ¶ó ¶³¸®´Â ¸¶À½À¸·Î ÀÓÇÏ°í ÀÖ´Ù. ´Ù¸¸, ÇÑ°¡Áö È®½Å¿¡ Â÷¼ ¸»ÇÒ ¼ö ÀÖ´Â °ÍÀº ÇöÀå¿¡¼ ¾ÆÀ̵é°ú ¼ö¾÷ÇÏ¸é¼ Çǵå¹é ¹Þ°í, À¯¼öÀÇ ´ëÇб³¿¡ ÀÔÇÐÇÑ Á¦Àڵ鿡°Ô ¿©·¯ Â÷·Ê È®ÀÎ ¹× °Ë¼ö¸¦ ¹ÞÀº ³»¿ëÀ¸·Î ±¸¼ºÇÏ¿´±â¿¡, ¾ÆÀ̵éÀÇ ´«³ôÀÌ¿¡ ¸ÂÃá ÀÔ¹®±³Àç·Î ÀûÀýÇÑ ±³Àç¶ó´Â °ÍÀÌ´Ù. ±³Àç Á¦¸ñÀÎ Essential Guide°¡ ¾Ï½ÃÇϵí, ÇÙ½É ¹®Á¦µé·Î ±¸¼ºµÇ¾îÀÖ¾î, 150ÂÊ ³»¿ÜÀÇ ±³Àç·Î ±¸¼ºµÇ¾úÁö¸¸, Ã¥À» ±¸¼ºÇÏ°í ÀÖ´Â ¹®Á¦µéÀº ¸ðµÎ ÇϳªÇϳª °æ½Ã¼öÇÐÀ» ÁغñÇÏ·Á´Â Çлýµé¿¡°Ô ¹Ýµå½Ã ÇÊ¿äÇÑ ¹®Á¦µéÀÌ´Ù.
¹Ì±¹ Northwestern University, B.A. in Mathematics and Economics(³ë½º¿þ½ºÅÏ ´ëÇб³ ¼öÇаú/°æÁ¦Çаú Á¹¾÷), ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç, ¾Ð±¸Á¤ ÇöÀå°ÀÇ ReachPrep ¿øÀåÀÌ´Ù. °íµîÇб³ ½ÃÀý ¹®°ú¿´´Ù°¡, ¹Ì±¹ ³ë½º¿þ½ºÅÏ ´ëÇб³ ÇкΠ½ÃÀý ÀçÇÐ Áß ¼öÇп¡ ¸Å ·áµÇ¾î, Calculus ¹× Multivariable Calculus Á¶±³ È°µ¿ ¹× ¼öÇÐ °ÀÇ È°µ¿À» ÇØ¿Â ¹®/ÀÌ°ú¸¦ ¾Æ¿ì¸£´Â µ¶Æ¯ÇÑ ÀÌ·ÂÀ» °¡Áø °»çÀÌ´Ù. ÇöÀç ¾Ð±¸Á¤ ¹Ì±¹¼öÇÐ/°úÇÐÀü¹® ÇпøÀ¸·Î ReachPrep(¸®Ä¡ÇÁ·¾)À» ¿î¿µ ÁßÀ̸ç, ¹Ì±¹ ¸í¹® º¸µù½ºÄð Çлýµé°ú ±¹³» ¿Ü±¹ÀÎÇб³ ¹× ±¹Á¦Çб³ ÇлýµéÀ» ²ÙÁØÈ÷ ÁöµµÇÏ¸é¼ ¸í¼ºÀ» ½×¾Æ°¡°í ÀÖ´Ù. 2010³â ÀÚ±âÁÖµµÇнÀ¼ÀÎ ¡°¸ôÀÔ°øºÎ¡±¸¦ ÁýÇÊÇÑ ÀÌÈÄ, ¹Ì±¹ Áß°í±³¼öÇп¡ °ü½ÉÀ» º» °ÝÀûÀ¸·Î °¡Áö°Ô µÇ¾ú°í, ÇöÀç À¯Çϸ²Ä¿¸®Å§·³ Essential Math Series¸¦ ÁýÇÊÇÏ¿©, ¾Ð±¸Á¤ ÇöÀå°ÀÇ ¹Ì±¹¼öÇÐÇÁ¸®Æнº¸¦ ÅëÇØ, ¾ÐµµÀûÀ¸·Î ¸¹Àº ÇлýµéÀÇ Çǵå¹éÀ» Åë ÇØ, ¹ßÀüÀûÀ¸·Î ±³Àç ÁýÇÊ¿¡ Èû¾²°í ÀÖ´Ù. À¯ÇÐºÐ¾ß ÀÎÅÍ³Ý °ÀÇ 1À§ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°»ç Áß ÇÑ ¸íÀ¸·Î ¹Ì ±¹ ¼öÇÐ Ä¿¸®Å§·³ÀÇ ±âÃʼöÇкÎÅÍ °æ½Ã¼öÇбîÁö ¸ðµÎ ¿µ¾î¿Í Çѱ¹¾î·Î °ÀÇÇϸé¼, ½ÇÀü °æÇèÀ» ½×¾Æ ±× Àü¹®¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù. Àú¼·Î´Â ¡º¸ôÀÔ°øºÎ¡» ¡ºThe Essential Workbook for SAT Math Level 2¡» ¡ºEssential Math Series ½Ã¸®Áî¡» µîÀÌ ÀÖ´Ù.
Preface 3 ÀÌ Ã¥ÀÇ Æ¯Â¡ 4 TOPIC 1 Beginning with Combinatorics 9 1.1 Multiplication and Addition Principle................. 10 1.2 Principle of Inclusion and Exclusion.................. 12 1.3 Practices.............................................................. 13 TOPIC 2 Continuing with Combinatorics 31 2.1 Case enumeration and Complements................. 32 2.2 Indistinguishables and Distinguishables............ 34 TOPIC 3 Ending with Combinatorics 53 3.1 Probability with restrictions............................... 54 3.2 Combinatorial Probability................................... 56 3.3 Practices ............................................................. 57 TOPIC 4 Beginning with Number Theory 79 4.1 Divisor and Remainders...................................... 80 4.2 Parity and Modular Arithmetic............................ 82 4.3 Practices ............................................................. 83TOPIC 5 Ending with Number Theory 99 5.1 Divisibility and Modular Arithmetic................... 100 5.2 Chinese Remainder Theorem.............................. 102 5.3 Base Expression and Modular Expression......... 103 5.4 Practices ............................................................. 104 TOPIC 6 Beginning with Geometry 121 6.1 Basic Guidelines for Plane Geometry Problems.122 6.2 Angle Bisector and Perpendicular Bisector........ 123 6.3 Practices ............................................................. 124 TOPIC 7 Ending with Geometry 137 7.1 Quadrilaterals and Cyclic Quadrilaterals............ 138 7.2 Circles ................................................................ 139 7.3 Practices ............................................................. 140