°³Á¤ÆÇ¿¡¼´Â ³í¸®ÀûÀ¸·Î ¿Ïº®ÇÏÁö ¸øÇÑ ºÎºÐÀ» º¸°ÇÏ¿´°í Ã¥¿¡´Â ¾øÀ¸³ª ½ÇÁ¦ °ÀÇ ¶§ ¾ð±ÞµÈ ¼³¸íÀ» Ãß°¡Çß´Ù. ƯÈ÷ ¡× 5.5ÀÇ ³»¿ëÀ» ¸¹ÀÌ º¸¿ÏÇÏ¿´°í ±âÁ¸¿¡ µ¶ÀÚµéÀÇ ¿äû¿¡ µû¶ó ¿¬½À¹®Á¦¸¦ º¸°Çß´Ù. Çà °£¼Ò »ç´Ù¸® ²ÃÀÇ À¯ÀϼºÀº ´õ ±âÃÊÀûÀÎ Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 3.8·Î ¿Å°å´Ù. ¶Ç ÃÊÆÇ Á¦13ÀåÀÇ triangularizationµµ matrix size¿¡ °üÇÑ ±Í³³¹ý Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 7.3À¸·Î ¿Å°å°í, ÇкΠ2Çг⠼öÁØ¿¡ ÀûÇÕÇÏÁö ¾Ê¾Æ¼ ½ÇÁ¦ °ÀÇ¿¡¼µµ »ý·«Çß´ø ÃÊÆÇÀÇ ¡×15.4(¡°¿Ö nondegenerateÀÎ °æ¿ì¸¸?¡±)´Â »èÁ¦Çß´Ù.
¼¿ï´ëÇб³ÃâÆǹ®È¿ø [ ½Å°£¼Ò°³ ] µµ¼¸í (°³Á¤ÆÇ)¼±Çü´ë¼ö¿Í ±º ÇкΠ´ë¼öÇÐ °ÀÇ IÀú ÀÚ ÀÌÀμ®ÆÇ Çü 46¹èÆÇ(188*257)Á¦ Ã¥ ¾çÀå¸é ¼ö 512¸éÁ¤ °¡ 25,000¿ø¹ßÇàÀÏ 2015³â 5¿ù 15ÀÏISBN 978-89-521-1744-1 (93410)°³Á¤ÆÇ¿¡¼´Â ³í¸®ÀûÀ¸·Î ¿Ïº®ÇÏÁö ¸øÇÑ ºÎºÐÀ» º¸°ÇÏ¿´°í Ã¥¿¡´Â ¾øÀ¸³ª ½ÇÁ¦ °ÀÇ ¶§ ¾ð±ÞµÈ ¼³¸íÀ» Ãß°¡ÇÏ¿´´Ù. ƯÈ÷ ¡× 5.5ÀÇ ³»¿ëÀ» ¸¹ÀÌ º¸¿ÏÇÏ¿´°í ±âÁ¸¿¡ µ¶ÀÚµéÀÇ ¿äû¿¡ µû¶ó ¿¬½À¹®Á¦¸¦ º¸°ÇÏ¿´´Ù. Çà °£¼Ò »ç´Ù¸® ²ÃÀÇ À¯ÀϼºÀº ´õ ±âÃÊÀûÀÎ Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 3.8·Î ¿Å°å´Ù. ¶Ç ÃÊÆÇ Á¦13ÀåÀÇ triangularizationµµ matrix size¿¡ °üÇÑ ±Í³³¹ý Áõ¸íÀ¸·Î ´ëüÇÏ¿© ¡× 7.3À¸·Î ¿Å°å°í, ÇкΠ2Çг⠼öÁØ¿¡ ÀûÇÕÇÏÁö ¾Ê¾Æ¼ ½ÇÁ¦ °ÀÇ¿¡¼µµ »ý·«Çß´ø ÃÊÆÇÀÇ ¡×15.4(¡°¿Ö nondegenerateÀÎ °æ¿ì¸¸?¡±)´Â »èÁ¦ÇÏ¿´´Ù.¿î¿µÆÀ(´ëÇ¥): 02-880-5252¸¶ÄÉÆÃÆÀ(ÁÖ¹®): 02-889-4424 Æѽº: 02-889-0785ÆíÁýÆÀ: 02-880-5218~9151-742 ¼¿ï½Ã °ü¾Ç±¸ °ü¾Ç·Î 1ÇѱÛȨÆäÀÌÁö: http://www.snupress.comÂ÷ ·Ê ¸Ó¸®¸»°³Á¤ÆÇ ¸Ó¸®¸»Á¦1Àå Çà·Ä°ú Gauss ¼Ò°Å¹ý1.1. Matrix1.2. Gaussian Elimination1.3. Elementary Matrix1.4. Equivalence Class¿Í PartitionÁ¦2Àå º¤ÅÍ°ø°£2.1. Vector Space2.2. Subspace2.3. Vector SpaceÀÇ º¸±â2.4. IsomorphismÁ¦3Àå ±âÀú¿Í Â÷¿ø3.1. Linear Combination3.2. ÀÏÂ÷µ¶¸³°ú ÀÏÂ÷Á¾¼Ó3.3. Vector SpaceÀÇ Basis3.4. BasisÀÇ Á¸Àç3.5. Vector SpaceÀÇ Dimension3.6. ¿ì¸®ÀÇ Ã¶ÇÐ3.7. DimensionÀÇ º¸±â3.8. Row-reduced Echelon FormÁ¦4Àå ¼±Çü»ç»ó 4.1. Linear Map 4.2. Linear MapÀÇ º¸±â 4.3. Linear Extension Theorem 4.4. Dimension Theorem 4.5. Rank Theorem Á¦5Àå ±âº»Á¤¸®5.1. Vector Space of Linear Maps 5.2. ±âº»Á¤¸®: Ç¥ÁرâÀúÀÇ °æ¿ì 5.3. ±âº»Á¤¸®: ÀϹÝÀûÀÎ °æ¿ì 5.4. ±âº»Á¤¸®ÀÇ °á°ú¿Í ¿ì¸®ÀÇ Ã¶ÇÐ 5.5. Change of Bases 5.6. Similarity Relation Á¦6Àå Çà·Ä½Ä 6.1. Alternating Multilinear Form6.2. Symmetric Group6.3. DeterminantÀÇ Á¤ÀÇ I6.4. DeterminantÀÇ ¼ºÁú6.5. DeterminantÀÇ Á¤ÀÇ II 6.6. Cramer¡¯s Rule6.7. Adjoint MatrixÁ¦7Àå Ư¼º´ÙÇ׽İú ´ë°¢È7.1. Eigen-vector¿Í Eigen-value7.2. Diagonalization 7.3. Triangularization7.4. Cayley-Hamilton Theorem7.5. Minimal Polynomial7.6. Direct Sum°ú Eigen-space Decomposition Á¦8Àå ºÐÇØÁ¤¸®8.1. Polynomial8.2. T-Invariant Subspace8.3. Primary Decomposition Theorem 8.4. Diagonalizability8.5. T-Cyclic Subspace8.6. Cyclic Decomposition Theorem8.7. Jordan Canonical FormÁ¦9Àå RnÀÇ Rigid Motion 2419.1. Rn-°ø°£ÀÇ Dot Product 9.2. Rn-°ø°£ÀÇ Rigid Motion 9.3. Orthogonal Operator / Matrix9.4. Reflection9.5. O(2)¿Í SO(2) 9.6. SO(3)¿Í SO(n)Á¦10Àå ³»Àû °ø°£10.1. Inner Product Space 10.2. Inner Product SpaceÀÇ ¼ºÁú 10.3. Gram-Schmidt Orthogonalization 10.4. Standard Basis Óß Orthonormal Basis 10.5. Inner Product SpaceÀÇ Isomorphism10.6. Orthogonal Group°ú Unitary Group10.7. Adjoint Matrix¿Í ±× ÀÀ¿ëÁ¦11Àå ±º11.1. Binary Operation°ú Group11.2. GroupÀÇ Ãʺ¸Àû ¼ºÁú11.3. Subgroup11.4. ÇкΠ´ë¼öÇÐÀÇ Úâ11.5. Group Isomorphism11.6. Group Homomorphism11.7. Cyclic Group 11.8. Group°ú HomomorphismÀÇ º¸±â11.9. Linear GroupÁ¦12Àå Quotient12.1. Coset 12.2. Normal Subgroup°ú Quotient Group 12.3. Quotient Space12.4. Isomorphism Theorem12.5. Triangularization IIÁ¦13Àå Bilinear Form13.1. Bilinear Form 13.2. Quadratic Form13.3. Orthogonal Group°ú Symplectic Group 13.4. O(1, 1)°ú O(3, 1)13.5. Non-degenerate Bilinear Form 13.6. Dual Space¿Í Dual Map13.7. Duality 13.8. B-Identification13.9. Transpose Operator Á¦14Àå Hermitian Form14.1. Hermitian Form14.2. Non-degenerate Hermitian Form14.3. H-Identification°ú Adjoint OperatorÁ¦15Àå Spectral Theorem 15.1. Ç¥±â¹ý°ú ¿ë¾î 15.2. Normal Operator15.3. Symmetric Operator15.4. Orthogonal Operator15.5. EpilogueÁ¦16Àå Topology ¸Àº¸±â16.1. Matrix Group Isomorphism16.2. Compactness¿Í Connectedness Âü°í ¹®ÇåÇ¥±â¹ý ã¾Æº¸±âã¾Æº¸±â