¡º¹é°ßºÒ¿©ÀÏŸ µö·¯´× ÀÔ¹® with ÅÙ¼Ç÷οì 2.x¡»´Â ÅÙ¼Ç÷οì 2.x ±â¹ÝÀÇ ½Ç½ÀÇü µö·¯´× ÀÔ¹®¼´Ù. ÃʱÞÀÚ¿ë ½Ç½À¿¹Á¦ 165°³¸¦ ¼ö·ÏÇß°í ½ÇÀü ¿¬½À¹®Á¦ 15°³¸¦ ½º½º·Î Ç®¾îº»´Ù¸é µö·¯´× ÃʱÞÀ» Å»ÃâÇÏ¿© ½º½º·Î ÇнÀÇÒ ÁÙ ¾Æ´Â µ¶ÀÚ·Î °Åµì³¯ ¼ö ÀÖÀ» °ÍÀÌ´Ù. ´Ù¸¥ ÇÁ·Î±×·¡¹Ö ÀÔ¹®¼¿Í °°ÀÌ µö·¯´× ÇнÀ ¶ÇÇÑ ¹Ýº¹ ½Ç½À¸¸ÀÌ ÀÔ¹® ´Ü°è¸¦ ¹þ¾î³ª±â À§ÇÑ °¡Àå ºü¸¥ ¹æ¹ýÀÌ´Ù. ÀÌ Ã¥ÀÌ Á¦½ÃÇÏ´Â ÇнÀ ¹æ¹ýÀÎ, µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ¸ðµ¨À» ¸¸µé¸ç ÇнÀÀ» ½ÃÅ°´Â ÆÐÅÏÀ» ²ÙÁØÇÏ°Ô ¹Ýº¹ ÇнÀÇÏ´Ù º¸¸é ´ÙÀ½ ´Ü°è·Î ³ª¾Æ°¡´Â ±æÀ» ãÀ» ¼ö ÀÖÀ» °ÍÀÌ´Ù.
´ëÇпø ÁøÇÐ ÀüºÎÅÍ ½Å°æ¸Á¿¡ °ü½ÉÀ» °¡Áö°í À̸¦ °øºÎÇϱ⠽ÃÀÛÇß´Ù. ½Å°æ¸Á ±â¼úÀÌ ¸¹Àº »çȸÀû ¹®Á¦¸¦ ÇØ°áÇÒ ¼ö ÀÖ´Ù´Â ¸Å·Â¿¡ ²ø·Á Áö±Ý±îÁö °øºÎÇÏ°í ÀÖÀ¸¸ç, ´ëÇпø °úÁ¤¿¡¼ ½Å°æ¸Á ±â¼úÀ» È°¿ëÇÏ¿© ¼öÀÛ¾÷À» ÀÚµ¿ÈÇÏ´Â ¹®Á¦¸¦ ´Ù·ç¸é¼ ±× ¹ÏÀ½ÀÌ ±»¾îÁ³´Ù. Á¤º¸ °ÝÂ÷¿¡ °ü½ÉÀÌ ¸¹À¸¸ç, À̸¦ ÇØ°áÇϱâ À§ÇØ °³ÀÎ ºí·Î±× ¿î¿µ, ¿ÀǼҽº Âü¿© µîÀÇ È°µ¿À» ÇÏ°í ÀÖ´Ù. ·ÎµåºÏ¿¡¼ ¡º¹é°ßºÒ¿©ÀÏŸ µö·¯´× ÀÔ¹® with ÅÙ¼Ç÷οì 2.x¡»¸¦ ÁýÇÊÇß´Ù
ÁöÀºÀÌÀÇ ±Û ÆíÁýÀÚÀÌÀÚ º£Å¸Å×½ºÅÍÀÇ ±Û ÀÏ·¯µÎ±â 1Àå ÁغñÇϱâ1.1 ½ÃÀÛÇϸç 1.2 Äɶ󽺶õ 1.3 ÄÉ¶ó½º ÁغñÇϱâ 1.4 ¹«·á Ŭ¶ó¿ìµå »ç¿ëÇϱâ 1.5 API ¹®¼ È°¿ëÇϱâ Á¤¸®Çغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] ÅÙ¼Ç÷ο츦 ¼³Ä¡ÇÒ °¡»óȯ°æ ¸¸µé¾î º¸±â [ÇÔ²² ÇغÁ¿ä] ÅÙ¼Ç÷οì CPU ¹öÀü ¼³Ä¡Çϱâ [ÇÔ²² ÇغÁ¿ä] ÅÙ¼Ç÷οì GPU ¹öÀü ¼³Ä¡¿Í Å×½ºÆ® [ÇÔ²² ÇغÁ¿ä] ±¸±Û µå¶óÀÌºê ¿¬µ¿Çϱâ [ÇÔ²² ÇغÁ¿ä] ij±Û ³ëÆ®ºÏ¿¡¼ °á°ú¹° ¾ò´Â ¹æ¹ý 2Àå »ìÆ캸±â2.1 ¸Ó½Å·¯´× ÇÁ·Î¼¼½º °£·«È÷ »ìÆ캸±â 2.2 ¿ë¾î »ìÆ캸±â 2.3 µ¥ÀÌÅͼ »ìÆ캸±â 2.4 Ä¿¹Â´ÏƼ »ìÆ캸±â Á¤¸®Çغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] ÀÓÀǷΠŬ·¡½º È®·üÀ» ÁöÁ¤ÇÏ¿© ±×¸° ROC °î¼± (chapter02/roccurve.py) 3Àå ±âº»±â ´ÙÁö±â3.1 ±âº» ¿¬»ê Çغ¸±â 3.2 ½Å°æ¸Á 3.3 Äɶ󽺿¡¼ÀÇ °³¹ß °úÁ¤ Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] ÅÙ¼ÀÇ Â÷¿ø°ú ±âº» ¿¬»ê (basic_calc.ipynb) [ÇÔ²² ÇغÁ¿ä] Áï½Ã ½ÇÇà ¸ðµå¸¦ ÅëÇÑ ¿¬»ê (basic_calc.ipynb) [ÇÔ²² ÇغÁ¿ä] ÅÙ¼¿¡¼ ³ÑÆÄÀÌ·Î, ³ÑÆÄÀÌ¿¡¼ ÅÙ¼·Î (basic_calc.ipynb) [ÇÔ²² ÇغÁ¿ä] @tf.function (basic_calc.ipynb) [ÇÔ²² ÇغÁ¿ä] OR °ÔÀÌÆ® ±¸ÇöÇغ¸±â (perceptron.ipynb) [ÇÔ²² ÇغÁ¿ä] º¤ÅÍÀÇ ³»Àû (perceptron.ipynb) [ÇÔ²² ÇغÁ¿ä] XOR °ÔÀÌÆ® ±¸ÇöÇغ¸±â + ´ÙÃþ ÆÛ¼ÁÆ®·Ð (perceptron.ipynb) [ÇÔ²² ÇغÁ¿ä] ¿©·¯ °¡Áö È°¼ºÈ ÇÔ¼ö (perceptron.ipynb) [ÇÔ²² ÇغÁ¿ä] °æ»çÇÏ°¹ý ½ÇÇèÇغ¸±â (perceptron.ipynb) 4Àå ½Å°æ¸Á Àû¿ëÇغ¸±â4.1 MNIST¿Í Fashion-MNIST 4.2 º¸½ºÅÏ ÁÖÅà °¡°Ý ¿¹Ãø 4.3 ºù»êÀΰ¡? ¼±¹ÚÀΰ¡?-1 ¡®³ªÀÇ ÀÌÇصµ¸¦ ÃøÁ¤ÇÏÀÚ¡¯ 3¹ø ¹®Á¦4.4 ¹«½¼ ¿Ê°ú ¹«½¼ »ö?-1 Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù ¹ø¿Ü_ij±ÛÀ» ÅëÇØ ´É·Â Çâ»ó½ÃÅ°±â [ÇÔ²² ÇغÁ¿ä] MNIST µ¥ÀÌÅͼ ´Ù¿î¹Þ±â (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍÀÇ ÇüÅ ȮÀÎÇϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ±×·Áº¸±â (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] °ËÁõ µ¥ÀÌÅÍ ¸¸µé±â (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÀÔ·ÂÀ» À§ÇÑ µ¥ÀÌÅÍ Àüó¸® (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÀÔ·ÂÀ» À§ÇÑ ·¹À̺í Àüó¸® (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸¼ºÇϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¼ÒÇÁÆ®¸Æ½º¿Í ½Ã±×¸ðÀÌµå °ªÀÇ ºñ±³ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ°úÁ¤ ¼³Á¤Çϱâ (mnist.pynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀÇϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] history¸¦ ÅëÇØ È®ÀÎÇغ¼ ¼ö ÀÖ´Â °ª Ãâ·ÂÇϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ °á°ú ±×·Áº¸±â (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ Æò°¡Çϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀµÈ ¸ðµ¨À» ÅëÇØ °ª ¿¹ÃøÇϱâ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¿¹Ãø°ª ±×·Á¼ È®ÀÎÇغ¸±â (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ Æò°¡ ¹æ¹ý 1?È¥µ¿Çà·Ä (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ Æò°¡ ¹æ¹ý?2 ºÐ·ù º¸°í¼ (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] MNIST µ¥ÀÌÅͼ ´Ù·ç±â: Àüü ÄÚµå (mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] Fashion-MNIST µ¥ÀÌÅͼ ´Ù¿î¹Þ±â (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ±×·Áº¸±â (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] Àüó¸® ¹× °ËÁõ µ¥ÀÌÅͼ ¸¸µé±â (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ù ¹ø° ¸ðµ¨ ±¸¼ºÇϱâ (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ °úÁ¤ ¼³Á¤ ¹× ÇнÀÇϱâ (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] µÎ ¹ø° ¸ðµ¨ ±¸¼ºÇϱâ (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] µÎ ¸ðµ¨ÀÇ ÇнÀ °úÁ¤ ±×·Áº¸±â (fashion-mnist.ipynb) [ÇÔ²² ÇغÁ¿ä] º¸½ºÅÏ ÁÖÅà °¡°Ý µ¥ÀÌÅͼ ´Ù¿î¹Þ±â (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ÇüÅ ȮÀÎÇϱâ (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ Àüó¸® ¹× °ËÁõ µ¥ÀÌÅͼ ¸¸µé±â (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸¼ºÇϱâ (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀÇÏ°í Æò°¡Çϱâ (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] K-Æúµå »ç¿ëÇϱâ (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] K-Æúµå °á°ú È®ÀÎÇϱâ (boston.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ºÒ·¯¿À±â (clothes1.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö Á¦³×·¹ÀÌÅÍ Á¤ÀÇ ¹× ¸ðµ¨ ±¸¼ºÇϱâ (clothes1.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ Á¦³×·¹ÀÌÅÍ Á¤ÀÇÇϱâ (clothes1.ipynb) [ÇÔ²² ÇغÁ¿ä] Á¦³×·¹ÀÌÅ͸¦ ÅëÇØ ¸ðµ¨ ÇнÀ½ÃÅ°±â (clothes1.ipynb) [ÇÔ²² ÇغÁ¿ä] Å×½ºÆ® µ¥ÀÌÅÍ ¿¹ÃøÇϱâ (clothes1.ipynb) 5Àå ÄÁº¼·ç¼Ç ½Å°æ¸Á5.1 ÀÏ´Ü »ç¿ëÇغ¸±â 5.2 ÄÁº¼·ç¼ÇÃþ°ú Ç®¸µÃþ 5.3 CIFAR-10 »ìÆ캸±â 5.4 ºù»êÀΰ¡? ¼±¹ÚÀΰ¡??2 ¡®³ªÀÇ ÀÌÇصµ¸¦ ÃøÁ¤ÇÏÀÚ¡¯ 3¹ø ¹®Á¦5.5 ÀüÀÌ ÇнÀ Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ »ìÆ캸±â (fashion_mnist_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸¼ºÇϱâ (fashion_mnist_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (fashion_mnist_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö ÇÊÅÍ »ç¿ëÇغ¸±â (use_image_filter.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö ÇÊÅÍ Á¤ÀÇÇϱâ (use_image_filter.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö ÇÊÅÍ Àû¿ëÇϱâ (use_image_filter.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö ÇÊÅ͸¦ Àû¿ëÇÑ ÃÖÁ¾ °á°ú (use_image_filter.ipynb) [ÇÔ²² ÇغÁ¿ä] Ç®¸µ ¿¬»ê ±¸ÇöÇϱâ (use_image_filter.ipynb) [ÇÔ²² ÇغÁ¿ä] model.summary( ) ÇÔ¼ö »ç¿ëÇϱâ [ÇÔ²² ÇغÁ¿ä] plot_model( ) ÇÔ¼ö »ç¿ëÇϱâ [ÇÔ²² ÇغÁ¿ä] CIFAR-10 µ¥ÀÌÅͼ ´Ù¿î¹Þ±â (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 µ¥ÀÌÅÍ ±×·Áº¸±â (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 µ¥ÀÌÅͼ Àüó¸® °úÁ¤ (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 ¸ðµ¨ ±¸¼ºÇϱâ (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 ¸ðµ¨ ÇнÀÇϱâ (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 ÇнÀ °úÁ¤ ±×·Áº¸±â (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] ½Å°æ¸Á ½Ã°¢ÈÇغ¸±â (cifar10_cnn.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 ±ÔÁ¦È ÇÔ¼ö »ç¿ëÇغ¸±â (drop_the_overfitting_regularizer.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 µå·Ó¾Æ¿ô »ç¿ëÇغ¸±â (drop_the_overfitting_dropout.ipynb) [ÇÔ²² ÇغÁ¿ä] CIFAR-10 ¹èÄ¡ Á¤±ÔÈ »ç¿ëÇغ¸±â (drop_the_overfitting_BN.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö Á¦³×·¹ÀÌÅ͸¦ »ç¿ëÇÏ¿© À̹ÌÁö ±×·Áº¸±â (basic_image_generator.ipynb) [ÇÔ²² ÇغÁ¿ä] À̹ÌÁö Á¦³×·¹ÀÌÅ͸¦ »ç¿ëÇÏ¿© ¸ðµ¨ ÇнÀÇϱâ (basic_image_generator.ipynb) [ÇÔ²² ÇغÁ¿ä] ÀüÀÌ ÇнÀ »ç¿ëÇغ¸±â (basic_transfer_learning.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ µ¿°á ÇØÁ¦Çϱâ [ÇÔ²² ÇغÁ¿ä] ÀüÀÌ ÇнÀÀ» ÅëÇØ ÇнÀÇϱâ (basic_transfer_learning.ipynb) 6Àå ¼øȯ ½Å°æ¸Á6.1 Embedding 6.2 RNN 6.3 LSTM 6.4 Conv1D 6.5 BERT °¡º±°Ô ¾Ë¾Æº¸±â Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] ÅäÅ«È ÀÛ¾÷ ¼öÇàÇϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅͼ ´Ù¿î¹Þ±â (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ÇüÅ ȮÀÎÇϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ù ¹ø° µ¥ÀÌÅÍ È®ÀÎÇϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] IMDB µ¥ÀÌÅͼ¿¡¼ °¡Àå ºó¹øÇÏ°Ô »ç¿ëµÇ´Â ¼¼ °³ÀÇ ´Ü¾î [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅ͸¦ µ¿ÀÏÇÑ ±æÀÌ·Î ¸ÂÃß±â (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] EmbeddingÃþÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ Æò°¡Çϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ °úÁ¤ È®ÀÎÇϱâ (use_embedding_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] cos ÇÔ¼ö¸¦ ÀÌ¿ëÇÏ¿© µ¥ÀÌÅÍ ¸¸µé±â (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] Àüó¸® °úÁ¤ ¼öÇàÇϱâ (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ ÇüÅ ȮÀÎÇϱâ (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] SimpleRNNÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¿¹Ãø °á°ú ±×·Áº¸±â (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] IMDB µ¥ÀÌÅͼ »ç¿ëÇϱâ (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] SimpleRNNÃþÀÇ Ãâ·Â°ª º¯È È®ÀÎÇϱâ (use_SimpleRNN_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] reuters µ¥ÀÌÅͼ ´Ù·ïº¸±â (use_LSTM_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅͼ Àüó¸® °úÁ¤ [ÇÔ²² ÇغÁ¿ä] LSTM ÃþÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (use_LSTM_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (use_LSTM_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] Conv1D ÃþÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (use_Conv1D_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (use_Conv1D_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅÍ »ý¼ºÇϱâ (use_Conv1D_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸¼º ¹× °á°ú È®ÀÎÇϱâ (use_Conv1D_layer.ipynb) 7Àå ÃʱÞÀ» ÇâÇؼ-17.1 Äɶó½ºÀÇ ¸ðµ¨ ±¸¼º ¹æ¹ý 7.2 ÇÔ¼öÇü API 7.3 ºù»êÀΰ¡? ¼±¹ÚÀΰ¡?-3 ¡®³ªÀÇ ÀÌÇصµ¸¦ ÃøÁ¤ÇÏÀÚ¡¯ 1¹ø ¹®Á¦7.4 ¹«½¼ ¿Ê°ú ¹«½¼ »ö?-2 7.5 ÄÉ¶ó½º Äݹé Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] Sequential( ) ¸ðµ¨ ±¸¼º (make_model_three_ways.ipynb) [ÇÔ²² ÇغÁ¿ä] ¼ºêŬ·¡½Ì ¸ðµ¨ ±¸¼º (make_model_three_ways.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇÔ¼öÇü API ¸ðµ¨ ±¸¼ºÇϱâ (make_model_three_ways.ipynb) [ÇÔ²² ÇغÁ¿ä] MNIST µ¥ÀÌÅͼ ºÒ·¯¿À±â ¹× Àüó¸® (functional_api_MNIST.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇÔ¼öÇü API¸¦ È°¿ëÇÑ ¸ðµ¨ ±¸¼º ¹× ÇнÀ (functional_api_MNIST.ipynb) [ÇÔ²² ÇغÁ¿ä] ´ÙÁß ÀÔÃâ·ÂÀ» À§ÇÑ µ¥ÀÌÅÍ »ý¼ºÇϱâ (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ´ÙÁß ÀÔÃâ·Â ¸ðµ¨ ±¸¼ºÇϱâ (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸Á¶ ±×·Áº¸±â (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸Á¶ È®ÀÎÇϱâ (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ´ÙÁß ÀÔÃâ·Â ¸ðµ¨¿¡¼ ÇнÀ °úÁ¤ ¼³Á¤Çϱâ (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ´ÙÁß ÀÔÃâ·Â ¸ðµ¨ ÇнÀÇϱâ (functional_api_multi_io.ipynb) [ÇÔ²² ÇغÁ¿ä] ÀÜÂ÷ ¿¬°áÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (residual_and_inception_module.ipynb) [ÇÔ²² ÇغÁ¿ä] ÀμÁ¼Ç ¸ðµâÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (residual_and_inception_module.ipynb) [ÇÔ²² ÇغÁ¿ä] ResNetÀ» È°¿ëÇÏ¿© ¸ðµ¨ ±¸¼ºÇϱâ (resnet_transfer.ipynb) [ÇÔ²² ÇغÁ¿ä] ÅÙ¼Ç÷οì Çãºê ¼³Ä¡Çϱâ [ÇÔ²² ÇغÁ¿ä] CIFAR-10 µ¥ÀÌÅͼ ºÒ·¯¿À±â (use_tensorflow_hub.ipynb) [ÇÔ²² ÇغÁ¿ä] Àüü ¸ðµ¨ ±¸¼ºÇϱâ (use_tensorflow_hub.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇнÀ½ÃÅ°±â (use_tensorflow_hub.ipynb) [ÇÔ²² ÇغÁ¿ä] (clothes_classification/clothes3.csv) [ÇÔ²² ÇغÁ¿ä] (clothes_classification/clothes3.csv) [ÇÔ²² ÇغÁ¿ä] (clothes_classification/clothes3.csv) [ÇÔ²² ÇغÁ¿ä] ÄÉ¶ó½º ÄÝ¹é »ç¿ë ÁغñÇϱâ (use_keras_callbacks.ipynb) [ÇÔ²² ÇغÁ¿ä] ModelCheckpoint ÄÝ¹é »ç¿ëÇϱâ (use_keras_callbacks.ipynb) [ÇÔ²² ÇغÁ¿ä] EarlyStopping ÄÝ¹é »ç¿ëÇϱâ (use_keras_callbacks.ipynb) [ÇÔ²² ÇغÁ¿ä] ReduceLROnPlateau ÄÝ¹é »ç¿ëÇϱâ (use_keras_callbacks.ipynb) [ÇÔ²² ÇغÁ¿ä] TensorBoard ÄÝ¹é »ç¿ëÇϱâ (use_keras_callbacks.ipynb) [ÇÔ²² ÇغÁ¿ä] ÅÙ¼º¸µå ½ÇÇàÇϱâ - 1 [ÇÔ²² ÇغÁ¿ä] ÅÙ¼º¸µå ½ÇÇàÇϱâ- 2 8Àå ÃʱÞÀ» ÇâÇؼ-28.1 Ä¿½ºÅ͸¶ÀÌÁ¦ÀÌ¼Ç 8.2 1¡¿1 ÄÁº¼·ç¼Ç 8.3 ÃÊ±Þ ´Ü°è¸¦ À§ÇØ ÇÑ°ÉÀ½ ´õ Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù [ÇÔ²² ÇغÁ¿ä] Lambda Ãþ »ç¿ëÇϱâ (custom_keras_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ Äɶó½ºÃþ »ç¿ëÇϱâ (custom_keras_layer.ipynb) [ÇÔ²² ÇغÁ¿ä] Activation ÇÔ¼ö¿¡ Á÷Á¢ Àü´ÞÇÏ´Â ¹æ¹ý (custom_activation.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ °´Ã¼ ¸ñ·ÏÀ» »ç¿ëÇÏ´Â ¹æ¹ý - 1 (custom_activation.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ °´Ã¼ ¸ñ·ÏÀ» »ç¿ëÇÏ´Â ¹æ¹ý ? 2 (custom_activation.ipynb) [ÇÔ²² ÇغÁ¿ä] RAdam ¼³Ä¡Çϱâ [ÇÔ²² ÇغÁ¿ä] RAdamÀÇ Á¸Àç ¾Ë±â (custom_activation.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ ¼Õ½Ç ÇÔ¼ö Á¤ÀÇÇϱâ (custom_loss.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ ¼Õ½Ç ÇÔ¼ö?MNIST ÇнÀ (custom_loss.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ Æò°¡ÁöÇ¥ Á¤ÀÇÇÏ¿© »ç¿ëÇϱâ (custom_metrics.ipynb) [ÇÔ²² ÇغÁ¿ä] ƯÁ¤ ½ÃÁ¡¿¡ ÇнÀ·üÀ» Á¶Á¤ÇÏ´Â Ä¿½ºÅÒ ÄÉ¶ó½º Äݹé (custom_callback.ipynb) [ÇÔ²² ÇغÁ¿ä] Ä¿½ºÅÒ ÄÉ¶ó½º ÄݹéÀ» »ç¿ëÇÏ¿© ¸ðµ¨ ÇнÀ½ÃÅ°±â (custom_callback.ipynb) [ÇÔ²² ÇغÁ¿ä] ÄÁº¼·ç¼ÇÃþ¸¸À¸·Î ±¸¼ºÇÑ ¸ðµ¨ - 1 (MNIST_1¡¿1_convolution.ipynb) [ÇÔ²² ÇغÁ¿ä] ÄÁº¼·ç¼ÇÃþ¸¸À¸·Î ±¸¼ºÇÑ ¸ðµ¨ - 2 (MNIST_1¡¿1_convolution.ipynb) 9Àå ÄÉ¶ó½º Æ©³Ê9.1 Ž»öÇØ¾ß ÇÒ ÇÏÀÌÆÛÆĶó¹ÌÅÍ 9.2 Äɶó½ºÆ©³Ê »ç¿ëÇϱâ 9.3 Äɶó½ºÆ©³Ê ´õ ½±°Ô »ç¿ëÇϱâ Á¤¸®Çغ¾½Ã´Ù ½Ç½ÀÇغ¾½Ã´Ù ºÎ·Ï A: ¿ÀÅäÄɶó½º(AutoKeras) ºÎ·Ï B: tf.data ºÎ·Ï C: ÀÌ·¸°Ôµµ ÇнÀÇÒ ¼ö ÀÖ¾î¿ä! [ÇÔ²² ÇغÁ¿ä] °£´ÜÇÑ ±¸Á¶ÀÇ CNN ¸ðµ¨ »ìÆ캸±â (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] ÄÉ¶ó½º Æ©³Ê ¼³Ä¡Çϱâ [ÇÔ²² ÇغÁ¿ä] ÄÉ¶ó½º Æ©³Ê ¸ðµ¨ Á¤ÀÇÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] MNIST µ¥ÀÌÅͼ ÁغñÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] RandomSearch Ŭ·¡½º »ç¿ëÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] Ž»öÇÒ ÇÏÀÌÆÛÆĶó¹ÌÅÍ »ìÆ캸±â (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇÏÀÌÆÛÆĶó¹ÌÅÍ Å½»öÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] ½ÇÇè °á°ú ¿ä¾àÇغ¸±â (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] °¡Àå ÁÁÀº ¼º´ÉÀÇ ¸ðµ¨ ºÒ·¯¿À±â (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ÇÏÀÌÆÛÆĶó¹ÌÅÍ È®ÀÎÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] HyperResNet »ç¿ëÇϱâ (keras_tuner_example.ipynb) [ÇÔ²² ÇغÁ¿ä] (clothes_classification/tf_data_example.py) [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅͼ ºÒ·¯¿À±â ()appendix/training_with_tensorflow2.0.ipynb [ÇÔ²² ÇغÁ¿ä] µ¥ÀÌÅͼ °´Ã¼ Á¤ÀÇÇϱâ ()appendix/training_with_tensorflow2.0.ipynb [ÇÔ²² ÇغÁ¿ä] ¸ðµ¨ ±¸¼ºÇϱâ (appendix/training_with_tensorflow2.0.ipynb) [ÇÔ²² ÇغÁ¿ä] °´Ã¼ Á¤ÀÇÇϱâ (appendix/training_with_tensorflow2.0.ipynb) [ÇÔ²² ÇغÁ¿ä] °è»ê ¹ß»ý ÁöÁ¤Çϱâ (appendix/training_with_tensorflow2.0.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ ¹× °ËÁõ ½ºÅÜ Á¤ÀÇÇϱâ (appendix/training_with_tensorflow2.0.ipynb) [ÇÔ²² ÇغÁ¿ä] ÇнÀ ÁøÇàÇϱâ (appendix/training_with_tensorflow2.0.ipynb) ã¾Æº¸±â