ÄÜÅÙÃ÷ »ó¼¼º¸±â
Number Theory


Number Theory

Number Theory

<À¯Çϸ²> Àú | Ç츣¸óÇϿ콺

Ãâ°£ÀÏ
2022-03-10
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
2 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

À¯Çϸ² Ä¿¸®Å§·³ Essential Math Series °æ½Ã ½ÃÇè ´ëºñ¸¦ À§ÇÑ Ã¥ Áß AMC 10(12), CEMC, ARML Local, Purple Comet Math Meet, Spirit of Math and Stanford SMILE International Contest¿Í °°Àº ½ÃÇèÀ» ´ëºñÇÏ´Â ±³ÀçÀÔ´Ï´Ù. AMC 10À» ÀÌ¹Ì ½ÃÀÛÇÏ´Â 8, 9, 10Çгâ Çѱ¹ ÇлýµéÀÌ AIME QualificationÀ» ¹Þ±â À§ÇØ °øºÎÇØ¾ß ÇÏ´Â Çʵ¶¼­°¡ µÇ±æ ¹Ù¶ó´Â ¸¶À½À¸·Î ÁýÇÊÇÏ¿´½À´Ï´Ù. ÇöÀç ¹Ì±¹ ¸í¹® Boarding School ¹× ±¹³»¿Ü ¿Ü±¹ÀÎ Çб³¿¡ ´Ù´Ï´Â 8, 9, 10Çгâ ÇлýµéÀÌ AMC 10(12) ¹× ´Ù¸¥ °æ½Ã ½ÃÇè¿¡¼­ ½ÇÁ¦·Î Àû±ØÀûÀ¸·Î »ç°í(think)ÇÏ°í, ¹®Á¦ Ç®ÀÌÀÇ ¹æÇâÀ» ÀâÀ» ¼ö ÀÖ±æ ¹Ù¶ó¸é¼­ Ã¥À» ½è½À´Ï´Ù.

ÀúÀÚ¼Ò°³

¹Ì±¹ Northwestern University, B.A. in Mathematics and Economics(³ë½º¿þ½ºÅÏ ´ëÇб³ ¼öÇаú/°æÁ¦Çаú Á¹¾÷), ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°­»ç, ¾Ð±¸Á¤ ÇöÀå°­ÀÇ ReachPrep ¿øÀåÀÌ´Ù. °íµîÇб³ ½ÃÀý ¹®°ú¿´´Ù°¡, ¹Ì±¹ ³ë½º¿þ½ºÅÏ ´ëÇб³ ÇкΠ½ÃÀý ÀçÇÐ Áß ¼öÇп¡ ¸Å ·áµÇ¾î, Calculus ¹× Multivariable Calculus Á¶±³ È°µ¿ ¹× ¼öÇÐ °­ÀÇ È°µ¿À» ÇØ¿Â ¹®/ÀÌ°ú¸¦ ¾Æ¿ì¸£´Â µ¶Æ¯ÇÑ ÀÌ·ÂÀ» °¡Áø °­»çÀÌ´Ù. ÇöÀç ¾Ð±¸Á¤ ¹Ì±¹¼öÇÐ/°úÇÐÀü¹® ÇпøÀ¸·Î ReachPrep(¸®Ä¡ÇÁ·¾)À» ¿î¿µ ÁßÀ̸ç, ¹Ì±¹ ¸í¹® º¸µù½ºÄð Çлýµé°ú ±¹³» ¿Ü±¹ÀÎÇб³ ¹× ±¹Á¦Çб³ ÇлýµéÀ» ²ÙÁØÈ÷ ÁöµµÇϸ鼭 ¸í¼ºÀ» ½×¾Æ°¡°í ÀÖ´Ù. 2010³â ÀÚ±âÁÖµµÇнÀ¼­ÀÎ ¡°¸ôÀÔ°øºÎ¡±¸¦ ÁýÇÊÇÑ ÀÌÈÄ, ¹Ì±¹ Áß°í±³¼öÇп¡ °ü½ÉÀ» º» °ÝÀûÀ¸·Î °¡Áö°Ô µÇ¾ú°í, ÇöÀç À¯Çϸ²Ä¿¸®Å§·³ Essential Math Series¸¦ ÁýÇÊÇÏ¿©, ¾Ð±¸Á¤ ÇöÀå°­ÀÇ ¹Ì±¹¼öÇÐÇÁ¸®Æнº¸¦ ÅëÇØ, ¾ÐµµÀûÀ¸·Î ¸¹Àº ÇлýµéÀÇ Çǵå¹éÀ» Åë ÇØ, ¹ßÀüÀûÀ¸·Î ±³Àç ÁýÇÊ¿¡ Èû¾²°í ÀÖ´Ù. À¯ÇÐºÐ¾ß ÀÎÅÍ³Ý °­ÀÇ 1À§ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°­»ç Áß ÇÑ ¸íÀ¸·Î ¹Ì ±¹ ¼öÇÐ Ä¿¸®Å§·³ÀÇ ±âÃʼöÇкÎÅÍ °æ½Ã¼öÇбîÁö ¸ðµÎ ¿µ¾î¿Í Çѱ¹¾î·Î °­ÀÇÇϸ鼭, ½ÇÀü °æÇèÀ» ½×¾Æ ±× Àü¹®¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù. Àú¼­·Î´Â ¡º¸ôÀÔ°øºÎ¡» ¡ºThe Essential Workbook for SAT Math Level 2¡» ¡ºEssential Math Series ½Ã¸®Áî¡» µîÀÌ ÀÖ´Ù.

¸ñÂ÷

Preface 3
ÀÌ Ã¥ÀÇ Æ¯Â¡ 4

TOPIC 1 Divisor and Remainders 9
1.1 Divisor and Remainders 10
1.2 Parity and More 13
1.3 Prime Factorization 23

TOPIC 2 Least Common Multiple and Greatest Common Divisor 35
2.1 Least Common Multiple 36
2.2 Greatest Common Divisor 46
2.3 Eulidean Algorithm and Bezout's Identity 56
2.4 Application of LCM and GCD 68

TOPIC 3 Counting Divisors and More Arithmetic 79
3.1 Counting Divisors and More Arithmetic 80

TOPIC 4 Base-N Expression 97
4.1 Base-N Expression 98

TOPIC 5 Modular Arithmetic 115
5.1 Basic Knowledge of Modular Arithmetic 116
5.2 Application of Modular Arithmetic 126

TOPIC 6 Mixed Practice 139