ÀÌ Ã¥Àº ¹æ´ëÇÑ IGCSE Additional MathematicsÀÇ ÅäÇȵéÀ» 15°³ÀÇ ÅäÇÈÀ¸·Î ¼¼ºÐÈÇÏ¿´´Ù. IGCSE Additional Mathematics ½ÃÇè¿¡ ÃâÁ¦µÉ ¼ö ÀÖ´Â ¸ðµç °³³ä°ú ½ÇÀü½ÃÇè¿¡ ³ª¿À´Â ¸ðµç ¹®Á¦À¯ÇüµéÀ» Æ÷ÇÔÇÏ¿© ½ÇÀü½ÃÇè¿¡ ´ëÇÑ ÀûÀÀ·ÂÀ» ³ôÀÏ ¼ö ÀÖµµ·Ï ±¸¼ºÇß´Ù. ÀÌ Ã¥À» ÅëÇؼ ÁßÇб³ °úÁ¤ÀÇ ÅºÅºÇÑ ¼öÇÐ ½Ç·ÂÀ» ½×À» ¼ö ÀÖ´Â °ÍÀº ¹°·ÐÀÌ°í ÇâÈÄ °øºÎÇÏ°Ô µÇ´Â IB Math³ª A-Level µîÀÇ ÀÌÈÄ °íµîÇб³ ¼öÇп¡ ÀÖ¾î¼ÀÇ µçµçÇÑ ±âÃÊ°¡ µÉ °ÍÀÌ´Ù.
CHAPTER 1 Functions 9 1.1 Definition of a function 9 1.2 Composition functions 13 1.3 Modulus or absolute value functions 14 1.4 Inverse functions 16 1.5 Transformations 19 CHAPTER 2 Quadratics 29 2.1 Quadratic functions 29 2.2 Maximum and minimum value by completing the square 31 2.3 Solving quadratic equations 32 2.4 Solving quadratic inequalities 34 2.5 Discriminant of a quadratic equation 35 CHAPTER 3 Indices and surds 43 3.1 Simplifying expressions involving indices 43 3.2 Solving equations involving indices 45 3.3 Simplifying expressions involving surds 47 3.4 Rationalizing the denominator 48 3.5 Solving equations involving surds 49 CHAPTER 4 Factors of polynomials 57 4.1 Operations with polynomials 57 4.2 Finding zeros of a polynomial function 59 4.3 The remainder theorem 60 4.4 The factor theorem 62 4.5 Rational zeros theorem 64 4.6 Graphing cubic functions 67 4.7 Solving cubic inequalities graphically 68 CHAPTER 5 Logarithmic and exponential functions 77 5.1 Logarithms 77 5.2 Properties of logarithms 79 5.3 Solving exponential and logarithmic Equations 82 5.4 Graphs of logarithmic and exponential functions 84 5.5 Graphs of y = kenx+ a and y = k ln (ax+b) 85 CHAPTER 6 Straight-line graphs 95 6.1 Coordinate geometry 95 6.2 Finding areas of polygons using shoelace method 98 6.3 Linear law 100 CHAPTER 7 Coordinate geometry of circles 109 7.1 The standard equation of a circle 109 7.2 Intersection of a circle and a straight line 111 7.3 The equation of a tangent line to a circle 113 7.4 Intersection of two circles 114 CHAPTER 8 Trigonometry 119 8.1 Circular measure 119 8.2 Finding the exact value of the trigonometric functions 123 8.3 Graphs of trigonometric functions 128 8.4 Solving trigonometric equations 134 8.5 Proving trigonometric identities 136 8.6 Area of non-right angled triangles 138 8.7 Solving triangles using the law of sines and cosines 139 CHAPTER 9 The binomial theorem 155 9.1 The Fundamental Counting Principle 155 9.2 Permutation and combination 157 9.3 The binomial theorem 159 CHAPTER 10 Sequence and series 169 10.1 Sequence 169 10.2 Series 172 CHAPTER 11 Vectors 181 11.1 Vector notation 181 11.2 Algebraic operations on vectors 183 11.3 Vector geometry 184 11.4 Constant velocity problems 191 CHAPTER 12 Derivative functions 199 12.1 Instantaneous rate of change 199 12.2 Finding the derivative functions 202 12.3 Tangent and normal lines 204 CHAPTER 13 Differentiation rules 211 13.1 The product and quotient rules 211 13.2 The chain rule 214 13.3 The second derivative 217 CHAPTER 14 Applications of differentiation 225 14.1 Small increments and approximations 225 14.2 Related rates 228 14.3 Understanding a curve from the first and second derivatives 231 14.4 Local maximum and local minimum 233 14.5 Practical maximum and minimum problems 236 CHAPTER 15 Integration 245 15.1 Indefinite integrals 245 15.2 The U-Substitution rule 250 15.3 Definite integrals 254 15.4 Area between two curves 257 15.5 Kinematics 260