ÄÜÅÙÃ÷ »ó¼¼º¸±â
ij±Û ¸Þ´Þ¸®½ºÆ®°¡ ¾Ë·ÁÁִ ij±Û ³ëÇÏ¿ì


ij±Û ¸Þ´Þ¸®½ºÆ®°¡ ¾Ë·ÁÁִ ij±Û ³ëÇÏ¿ì

<±èÅÂÁø>,<±Ç¼øȯ>,<±è¿¬¹Î>,<±èÇö¿ì>,<¸í´ë¿ì>,<¾È¼öºó>,<ÀÌÀ¯ÇÑ>,<Á¤¼ºÈÆ> Àú | ±æ¹þ

Ãâ°£ÀÏ
2023-08-04
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
64 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ij±Û, ML/AI ½Ç¹«ÀÚ´ä°Ô Á¢±ÙÇ϶ó!
±¹³» ij±Û ½Ç·ÂÀÚ 8¸íÀÌ Á÷Á¢ ¼³¸íÇϴ ij±Û ÄÄÆäƼ¼Ç, ¾î¶»°Ô Á¢±ÙÇØ ¾ó¸¶³ª ³ë·ÂÇÏ´À³Ä¿¡ µû¶ó °æÇèÀÇ ±íÀÌ°¡ ´Þ¶óÁø´Ù.


±¹³» ij±Û ½Ç·ÂÀÚ 8¸íÀÌ ¸ð¿´´Ù. Á÷Á¢ Âü°¡ÇÑ ´ëȸ¸¦ ¼Ò°³ÇÏ°í, ½ÃÀÛºÎÅÍ Á¦Ãâ±îÁö Àü °úÁ¤À» »ý»ýÇÏ°Ô ´ã¾Æ ³Â´Ù. ÀÚ½ÅÀÇ ¼Ö·ç¼ÇÀ» ¼Ò°³Çϸç ÀڽŸ¸ÀÇ ÆÁ°ú ³ëÇϿ츦 ÀüÇÏ°í, ¿ì½ÂÆÀ/°íµæÁ¡ÆÀÀÇ ¾ÆÀ̵ð¾î¿Í ¼Ö·ç¼Çµµ Ãß°¡·Î ¼Ò°³ÇÔÀ¸·Î½á ÇϳªÀÇ ´ëȸ¿¡¼­ °¡´ÉÇÑ ¸¹Àº, dzºÎÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖµµ·Ï ±¸¼ºÇß´Ù. ij±ÛÀÇ Æ¯Â¡°ú ±â´ÉÀº ¹°·Ð öÇаú È°¿ë¹ý, ij±Û·¯ÀÇ ¸¶Àε带 ÀÚ¼¼È÷ ¾Ë·ÁÁÖ´Â 1ÀåÀ» ½ÃÀÛÀ¸·Î, À̹ÌÁö µ¥ÀÌÅ͸¦ »ç¿ëÇÏ´Â ÄÄÆäƼ¼Ç, Á¤Çü µ¥ÀÌÅ͸¦ °æÇèÇÒ ¼ö ÀÖ´Â ÄÄÆäƼ¼Ç, ij±ÛÀÇ TPU¸¦ »ç¿ëÇØ ÀÚ¿¬¾î 󸮸¦ ÇÏ´Â ÄÄÆäƼ¼Ç, ÁÁÀº ij±Û ³ëÆ®ºÏÀ» ÀÛ¼ºÇϱâ À§ÇÑ °¡ÀÌµå µîÀ» »ìÆ캸¸é¼­ Á»´õ ±íÀÌ ÀÖ°Ô Ä³±ÛÀ» °æÇèÇÏ´Â ¹æ¹ý¿¡ ´ëÇØ ¼÷°íÇØ º¸ÀÚ.

ÀúÀÚ¼Ò°³

ij±Û ÄÄÆäƼ¼Ç ¿¢½ºÆÛÆ®¦¢µÎµé¸° ML Engineer
»·ÇÑ ·¹ÆÛÅ丮 º¸´Ù´Â »ö´Ù¸¥ ½Ãµµ¿Í °æÇèÀ» ÁÁ¾ÆÇÏ´Â °³¹ßÀÚ. ÇÏ°í ½ÍÀº °ÍÀº ¸¹Áö¸¸ Á¤ÀÛ ¹«¾ùÀ» ÇÏ°í ½ÍÀºÁö ¸»ÇÏÁö ¸øÇß´ø ´ëÇб³ ½ÃÀý, Çо÷ º¸´Ù´Â °ø¸ðÀü, ÇØÄ¿Åæ °°Àº ´ë¿Ü È°µ¿À» ÁÁ¾ÆÇß´Ù. ±×·¯´ø ¾î´À³¯ µ¥ÀÌÅÍ »çÀ̾𽺶ó´Â »õ·Î¿î ºÐ¾ß¸¦ ¾Ë°Ô µÇ¾ú°í, µ¥ÀÌÅÍ »çÀ̾𽺠¹®Á¦°¡ °¡µæÇÑ Ä³±Û Ç÷§Æû¿¡ ÀÚ¿¬½º·¹ ºüÁö°Ô µÇ¾ú´Ù.

ij±Û·ÎºÎÅÍ Àü¼¼°è¿¡¼­ ÀϾ´Â µ¥ÀÌÅÍ »çÀ̾𽺠縰Áö¿¡ ´ëÇÑ ¹è°æÁö½Ä, ¹®Á¦¸¦ Ç®¾î³ª°¡´Â ¹æ¹ý, °æÀï ¼Ó¿¡¼­ ÇÔ²² ¼ºÀåÇÏ´Â ¹æ¹ýÀ» ¹è¿ì°Ô µÇ¾ú°í ÀÌ·¸°Ô ¹è¿î ¹®È­¿Í öÇÐÀ» ¹ÙÅÁÀ¸·Î ÇöÀç Ä¿¹Â´ÏƼ È°µ¿°ú ´õºÒ¾î, °­ÀÇ, ¸àÅ丵 µî ´Ù¾çÇÑ È°µ¿À» À̾°í ÀÖ´Ù.

_Çö) µÎµé¸° ML Engineer
_Àü) ¹ø°³ÀåÅÍ Data Scientist
_ºÎ½ºÆ®Ä·ÇÁ AI Tech ¸¶½ºÅÍ(Level1 À̹ÌÁöºÐ·ù)
_ij±ÛÄÚ¸®¾Æ ÆäÀ̽ººÏ ±×·ì ¿î¿µÁø

¸ñÂ÷

1Àå Kaggle
__1.1 ÄÄÆäƼ¼Ç
____1.1.1 ÄÄÆäƼ¼Ç ÆľÇ
____1.1.2 ÄÄÆäƼ¼Ç ¼±ÅÃ
____1.1.3 ÄÄÆäƼ¼Ç Á¾·á
__1.2 Ãʺ¸ ij±Û·¯¸¦ À§ÇÑ ÄÄÆäƼ¼Ç ½ÃÀÛ ÆÁ
____1.2.1 ÄÄÆäƼ¼ÇÀÌ ¾î·Á¿î ÀÌÀ¯
____1.2.2 ÄÄÆäƼ¼Ç ½ÃÀÛ
____1.2.3 ÄÄÆäƼ¼Ç Á¡¼ö¿¡ ´ëÇÑ »ý°¢
__1.3 ÄÚµå
____1.3.1 ³ëÆ®ºÏ
____1.3.2 Ŭ¶ó¿ìµå ³ëÆ®ºÏ
____1.3.3 Save Version
____1.3.4 °øÀ¯
__1.4 µ¥ÀÌÅͼÂ
____1.4.1 ij±Û µ¥ÀÌÅͼÂ
____1.4.2 µ¥ÀÌÅͼ »ý¼º
____1.4.3 µ¥ÀÌÅͼ Ȱ¿ë
____1.4.4 °øÀ¯
__1.5 µð½ºÄ¿¼Ç
____1.5.1 µð½ºÄ¿¼Ç Á¾·ù¿Í ¿ªÇÒ
____1.5.2 Thanks for sharing!
__1.6 More
____1.6.1 Progression System
____1.6.2 Learn
__1.7 ÀÌÁ¦ ij±ÛÀÇ ¼¼°è·Î


2Àå Instant Gratification
__2.1 µé¾î°¡±â Àü¿¡
____2.1.1 ij±Û ÇÁ·ÎÇÊ: ±è¿¬¹Î
____2.1.2 ÄÚµå
__2.2 Overview
____2.2.1 ´ëȸ ¸ñÀû
____2.2.2 Æò°¡ ÁöÇ¥
____2.2.3 µ¥ÀÌÅÍ ¼Ò°³
__2.3 ¼Ö·ç¼Ç ¼Ò°³
____2.3.1 Overview
____2.3.2 EDA
____2.3.3 ½ºÅÂÅ·
____2.3.4 ¼Ö·ç¼Ç »ó¼¼
____2.3.5 Á¦Ãâ Àü·«
__2.4 µð½ºÄ¿¼Ç


3Àå IEEE-CIS Fraud Detection
__3.1 µé¾î°¡±â Àü¿¡
____3.1.1 ij±Û ÇÁ·ÎÇÊ: ±èÇö¿ì
____3.1.2 ij±Û ÇÁ·ÎÇÊ: Á¤¼ºÈÆ
____3.1.3 ÄÚµå
__3.2 Overview
____3.2.1 ´ëȸ ¸ñÀû
____3.2.2 Æò°¡ ÁöÇ¥
____3.2.3 µ¥ÀÌÅÍ ¼Ò°³
__3.3 ¼Ö·ç¼Ç ¼Ò°³
____3.3.1 Overview
____3.3.2 EDA
____3.3.3 ÇÇó ¿£Áö´Ï¾î¸µ
____3.3.4 ¸ðµ¨¸µ
__3.4 ´Ù¸¥ ¼Ö·ç¼Ç ¼Ò°³
____3.4.1 Overview
____3.4.2 EDA
____3.4.3 ÇÇó ¿£Áö´Ï¾î¸µ
____3.4.4 ÇÇó ¼±ÅÃ
____3.4.5 ¸ðµ¨¸µ
__3.5 µð½ºÄ¿¼Ç


4Àå Quick, Draw! Doodle Recognition
__4.1 µé¾î°¡±â Àü¿¡
____4.1.1 ij±Û ÇÁ·ÎÇÊ: ¸í´ë¿ì
____4.1.2 ÄÚµå
__4.2 Overview
____4.2.1 ´ëȸ ¸ñÀû
____4.2.2 Æò°¡ ÁöÇ¥
__4.3 ¼Ö·ç¼Ç
____4.3.1 EDA
____4.3.2 µ¥ÀÌÅÍ Àüó¸®
____4.3.3 µ¥ÀÌÅÍ »ý¼º
____4.3.4 ¸ðµ¨¸µ
____4.3.5 ¾Ó»óºí
__4.4 ´Ù¸¥ ¼Ö·ç¼Ç ¼Ò°³
__4.5 µð½ºÄ¿¼Ç


5Àå Bengali.AI Handwritten Grapheme Classification
__5.1 µé¾î°¡±â Àü¿¡
____5.1.1 ij±Û ÇÁ·ÎÇÊ: ÀÌÀ¯ÇÑ
____5.1.2 ÄÚµå
__5.2 Overview
____5.2.1 ´ëȸ ¸ñÀû
____5.2.2 Æò°¡ ÁöÇ¥
____5.2.3 µ¥ÀÌÅÍ ¼Ò°³
__5.3 ¼Ö·ç¼Ç ¼Ò°³
____5.3.1 °ËÁõ Àü·« ¼³Á¤
____5.3.2 ÇнÀ Àü Àüó¸®
____5.3.3 µ¥ÀÌÅͼ ¸¸µé±â
____5.3.4 ÇнÀ
____5.3.5 µ¥ÀÌÅÍ Áõ°­
____5.3.6 ¼öµµ ·¹ÀÌºí¸µ
____5.3.7 ¾Ó»óºí
__5.4 ´Ù¸¥ ¼Ö·ç¼Ç ¼Ò°³
____5.4.1 1µî ¼Ö·ç¼Ç
____5.4.2 2µî ¼Ö·ç¼Ç
__5.5 µð½ºÄ¿¼Ç
____5.5.1 Tips
____5.5.2 Èıâ


6Àå SIIM-ACR Pneumothorax Segmentation
__6.1 µé¾î°¡±â Àü¿¡
____6.1.1 ij±Û ÇÁ·ÎÇÊ: ±Ç¼øȯ
____6.1.2 ÄÚµå
__6.2 Overview
____6.2.1 ´ëȸ ¸ñÀû
____6.2.2 Æò°¡ ÁöÇ¥
____6.2.3 µ¥ÀÌÅÍ ¼Ò°³
__6.3 ¼Ö·ç¼Ç ¼Ò°³
____6.3.1 Object Detection, Instance/Semantic Segmentation
____6.3.2 U-Net
____6.3.3 ÇÏÀÌÆÛÄ÷³
____6.3.4 fast.ai ÇÁ·¹ÀÓ¿öÅ©
____6.3.5 ¼Õ½Ç ÇÔ¼ö Á¤ÀÇ
____6.3.6 Cyclic Learning Rates
____6.3.7 µ¥ÀÌÅÍ Áõ°­
____6.3.8 °æ·®È­ÀÇ Á߿伺
____6.3.9 Àüü Á¤¸®
__6.4 ´Ù¸¥ ¼Ö·ç¼Ç ¼Ò°³
____6.4.1 Model
____6.4.2 Fast Prototyping(Uptrain)
____6.4.3 Combo loss
____6.4.4 ¼¼ °³ÀÇ ÀÓ°ì°ª È°¿ë
__6.5 µð½ºÄ¿¼Ç



7Àå Jigsaw Unintended Bias in Toxicity Classification
__7.1 µé¾î°¡±â Àü¿¡
____7.1.1 ij±Û ÇÁ·ÎÇÊ: ±èÅÂÁø
____7.1.2 ÄÚµå
__7.2 Overview
____7.2.1 ´ëȸ ¸ñÀû
____7.2.2 Æò°¡ ÁöÇ¥
____7.2.3 µ¥ÀÌÅÍ ¼Ò°³
__7.3 EDA
__7.4 ¼Ö·ç¼Ç ¼Ò°³(ÅÙ¼­Ç÷Î, TPU)
____7.4.1 Àüó¸®
____7.4.2 ¸ðµ¨
____7.4.3 ÅäÅ«È­
____7.4.4 TPU
____7.4.5 TFRecord
____7.4.6 ÇнÀ with TPU
____7.4.7 ¼­ºê¹Ì¼Ç ³ëÆ®ºÏ ¸¸µé±â
____7.4.8 °á°ú Á¦Ãâ
__7.5 ¼Ö·ç¼Ç ¼Ò°³(Ours)
__7.6 ¼Ö·ç¼Ç ¼Ò°³(2nd Prize)
__7.7 µð½ºÄ¿¼Ç


8Àå ij±Û ³ëÆ®ºÏ ÀÛ¼ºÀ» À§ÇÑ ÆÁ
__8.1 µé¾î°¡±â Àü¿¡
____8.1.1 ij±Û ÇÁ·ÎÇÊ: ¾È¼öºó
____8.1.2 ÄÚµå
____8.1.3 8Àå¿¡ ´ëÇÏ¿©
__8.2 °¢ ŸÀÔº° ³ëÆ®ºÏ°ú ÀÛ¼º ÆÁ
____8.2.1 EDA
____8.2.2 Àüó¸®
____8.2.3 ÆÄÀÌÇÁ¶óÀÎ
____8.2.4 °íµæÁ¡ ³ëÆ®ºÏ
____8.2.5 Æ©Å丮¾ó
____8.2.6 My First Notebook
__8.3 ÁÁÀº ³ëÆ®ºÏÀ» À§ÇÑ °¡À̵å¶óÀÎ
____8.3.1 ½Ã°¢È­
____8.3.2 Àç»ç¿ë¼º
____8.3.3 °¡µ¶¼º
____8.3.4 SEO
____8.3.5 È«º¸
____8.3.6 Ãâó
__8.4 ¸ÎÀ½¸»