¢º 19¼¼±â ¿µ±¹ öÇÐÀÚ Á¸ ½ºÆ©¾îÆ® ¹Ð(John Stuart Mill, 1806~1873)Àº Á¸ Çã¼È °æ(Sir John Herschel, 1st Baronet, 1792~1871)ÀÇ ÀÚ¿¬Ã¶ÇÐÀÇ ¿¬±¸¿¡ °üÇÑ ¿¹ºñ ´ã·Ð(A Preliminary Discourse on the study of Natural Philosophy, 1830), Àª¸®¾ö ÈÞ¾ó(William Whewell, 1794~1866)ÀÇ ±×µéÀÇ ¿ª»ç¸¦ ±â¹ÝÀ¸·Î ¼³¸³µÈ ±Í³³°úÇÐÀÇ Ã¶ÇÐ(History of the Inductive Sciences, from the Earliest to the Present Time, 1837) µî¿¡¼ Á¦½ÃµÈ ³í¸®ÇÐÀ» ½ÉÈ È¤Àº ¹Ý¹ÚÇϱâ À§ÇÏ¿© 1843³â ³í¸®ÇРü°è(A System of Logic, Ratiocinative and Inductive, 1843)¸¦ 6±Ç(Book VI.) 64°³ éÅÍ(Chapter)ÀÇ ¹æ´ëÇÑ ºÐ·®À¸·Î Ãâ°£ÇÏ¿´À¸¸ç, ´ç½Ã¿¡´Â ´ÜÇົ 2±ÇÀ¸·Î Ãâ°£µÇ¾ú½À´Ï´Ù. ¢¹ ±Í³³¹ý(Inductive Reasoning) ȤÀº ±Í³³³í¸®ÇÐ(ÏýÒ¡Öå×âùÊ)Àº ºñ´Ü ÀÚ¿¬ °úÇÐ ºÐ¾ß »Ó ¾Æ´Ï¶ó, ½É¸®ÇÐ, »çȸÇÐÀÇ ¿¬±¸ ¹æ¹ý·ÐÀ¸·Îµµ È¿¿ë¼ºÀÌ ³ô´Ù´Â Á¡À» °Á¶ÇÑ ÆÄ°ÝÀûÀÎ ÁÖÀåÀ» ´ã°í ÀÖÀ¸¸ç, ÀÌ °°Àº ¹ÐÀÇ ÁÖÀåÀº ÈÄ´ëÀÇ °úÇÐÀÚ¿Í Ã¶ÇÐÀÚ¿¡°Ô Áö´ëÇÑ ¿µÇâÀ» ¹ÌÃƽÀ´Ï´Ù. ¢¹ Á¸ ½ºÆ©¾îÆ® ¹ÐÀº ¿¬¿ª¹ýÀ» ºñÆÇÇÑ ¿µ±¹ÀÇ Ã¶ÇÐÀÚÀÌÀÚ °úÇÐÀÚÀÎ ÇÁ·£½Ã½º º£ÀÌÄÁ(Francis Bacon, 1561~1626)ÀÇ ±Í³³¹ýÀ» ÇÑÃþ ´õ ¹ßÀü½ÃŲ ±Í³³¹ý(Inductive reasoning)ÀÇ ´Ù¼¸ °¡Áö ¿øÄ¢(the five principles of inductive reasoning), ÀÏ¸í ¹ÐÀÇ ¹ýÄ¢(Mill's Methods)À» Á¦½ÃÇÏ¿´À¸¸ç ÀÌ·Î½á ´ç´ë Áö½ÄÀεéÀÌ °©·ÐÀ»¹ÚÇÏ´ø ±Í³³³í¸®ÇÐ(ÏýÒ¡Öå×âùÊ)ÀÌ ±¸Ã¼ÀûÀ¸·Î ü°èȵǾú½À´Ï´Ù. ¢¹ ¹ÐÀº ³í¸®ÇРü°è(A System of Logic, Ratiocinative and Inductive, 1843)¸¦ ¹ßÇ¥ÇÑ ÀÌÈÄ¿¡µµ ÀÚ½ÅÀÇ Ã¥À» ºñÆÇÇϰųª ³í¹ÚÇÑ ÇÐÀÚµéÀÇ ÀÇ°ßÀ» °ËÅäÇÏ¿´À¸¸ç, À̸¦ Åä´ë·Î ÀÚ½ÅÀÇ ÀÛÇ°À» ¿©·¯ Â÷·Ê °³Á¤ÇÏ¿´½À´Ï´Ù. ¢¹ º»Áö¿¡¼´Â 2±ÇÀ¸·Î Ãâ°£µÈ 7¹ø° ¿¡µð¼Ç(7th Edition)À» ±âÁØÀ¸·Î, 1~2±Ç¿¡ °ÉÃÄ ½Ç¸° Á¦3±Ç(BOOK III.)À» Á¦1ÀåºÎÅÍ Á¦13Àå(Chapter I.~Chapter XIII.)°ú Á¦14ÀåºÎÅÍ Á¦25Àå(Chapter XIV.~Chapter XXV.)À¸·Î ³ª´©¾î ÃÑ 7±ÇÀÇ ½Ã¸®Áî·Î Ãâ°£ÇÏ¿´½À´Ï´Ù. Å׸¶¿©Çà½Å¹® TTN Korea ¿µ¾î°íÀü(English Classics) 1,999¼±°ú ÇÔ²² ¾îÁ¦µµ, ¿À´Ãµµ, ³»Àϵµ ¸ÚÁø ¹®Çп©ÇàÀ»!
¢º BOOK III. OF INDUCTION. "In such cases the inductive and deductive methods of inquiry may be said to go hand in hand, the one verifying the conclusions deduced by the other; and the combination of experiment and theory, which may thus be brought to bear in such cases, forms an engine of discovery infinitely more powerful than either taken separately. This state of any department of science is perhaps of all others the most interesting, and that which promises the most to research."?Sir J. Herschel, Discourse on the Study of Natural Philosophy. ¢¹ Á¦3±Ç. À¯µµ(OF INDUCTION). "ÀÌ·¯ÇÑ °æ¿ì¿¡´Â ±Í³³Àû Ž±¸ ¹æ¹ý°ú ¿¬¿ªÀû Ž±¸ ¹æ¹ýÀÌ ÇÔ²² »ç¿ëµÈ´Ù°í ÇÒ ¼ö ÀÖÀ¸¸ç, Çϳª´Â ´Ù¸¥ Çϳª°¡ Ãß·ÐÇÑ °á·ÐÀ» °ËÁõÇϸç, µû¶ó¼ ÀÌ·¯ÇÑ °æ¿ì¿¡ Àû¿ëÇÒ ¼ö ÀÖ´Â ½ÇÇè°ú ÀÌ·ÐÀÇ Á¶ÇÕÀº ´ÙÀ½°ú °°Àº ÇüŸ¦ °®½À´Ï´Ù. °³º°ÀûÀ¸·Î »ý°¢ÇÏ´Â °Íº¸´Ù ÈξÀ ´õ °·ÂÇÑ ¹ß°ßÀÇ ¿£ÁøÀÔ´Ï´Ù. ¾î¶² °úÇÐ ºÐ¾ß¿¡¼µç ÀÌ·¯ÇÑ »óÅ´ ¾Æ¸¶µµ ´Ù¸¥ ¸ðµç ºÐ¾ß Áß¿¡¼ °¡Àå Èï¹Ì·Ó°í ¿¬±¸¿¡ °¡Àå ¸¹Àº °ÍÀ» ¾à¼ÓÇÏ´Â °ÍÀÔ´Ï´Ù." - Á¸ Çã¼È °æ(Sir John Frederick William Herschel, 1st Baronet KH FRS, 1792~1871), ÀÚ¿¬ ¿¬±¸¿¡ ´ëÇÑ ´ã·Ð öÇÐ(Discourse on the Study of Natural Philosophy, 1830).
¢º CHAPTER XIV. OF THE LIMITS TO THE EXPLANATION OF LAWS OF NATURE; AND OF HYPOTHESES. ¡× 1. The preceding considerations have led us to recognise a distinction between two kinds of laws, or observed uniformities in nature: ultimate laws, and what may be termed derivative laws. Derivative laws are such as are deducible from, and may, in any of the modes which we have pointed out, be resolved into, other and more general ones. Ultimate laws are those which cannot. We are not sure that any of the uniformities with which we are yet acquainted are ultimate laws; but we know that there must be ultimate laws; and that every resolution of a derivative law into more general laws, brings us nearer to them. ¢¹ Á¦14Àå. ÀÚ¿¬¹ýÄ¢ ¼³¸íÀÇ ÇÑ°è; ±×¸®°í °¡Á¤. ¡× 1. ¾Õ¼± °í·Á »çÇ×À» ÅëÇØ ¿ì¸®´Â µÎ Á¾·ùÀÇ ¹ýÄ¢ »çÀÌÀÇ ±¸º° ¶Ç´Â ÀÚ¿¬ÀÇ °üÂûµÈ ±ÕÀϼº, Áï ±Ã±ØÀûÀÎ ¹ýÄ¢°ú ÆÄ»ý ¹ýÄ¢À̶ó°í ºÒ¸®´Â °ÍÀ» ÀνÄÇÏ°Ô µÇ¾ú½À´Ï´Ù. ÆÄ»ý ¹ýÄ¢Àº ¿ì¸®°¡ ÁöÀûÇÑ ¹æ½Ä Áß Çϳª¿¡¼ ¿¬¿ªÇÒ ¼ö ÀÖ°í ´Ù¸¥ ´õ ÀϹÝÀûÀÎ ¹æ½ÄÀ¸·Î ÇØ°áµÉ ¼ö ÀÖ´Â ¹ýÄ¢ÀÔ´Ï´Ù. ±Ã±ØÀûÀÎ ¹ýÄ¢Àº ±×·¸°Ô ÇÒ ¼ö ¾ø´Â ¹ýÄ¢ÀÔ´Ï´Ù. ¿ì¸®°¡ ¾ÆÁ÷ ¾Ë°í ÀÖ´Â ÅëÀϼºÀÌ ±Ã±ØÀûÀÎ ¹ýÄ¢ÀÎÁö´Â È®½ÇÇÏÁö ¾Ê½À´Ï´Ù. ±×·¯³ª ¿ì¸®´Â ±Ã±ØÀûÀÎ ¹ýÄ¢ÀÌ ÀÖ¾î¾ß ÇÑ´Ù´Â °ÍÀ» ¾Ë°í ÀÖ½À´Ï´Ù. ÆÄ»ý¹ýÀ» º¸´Ù ÀϹÝÀûÀÎ ¹ýÄ¢À¸·Î °áÀÇÇÒ ¶§¸¶´Ù ¿ì¸®´Â ±× ¹ýÄ¢¿¡ ´õ °¡±î¿öÁý´Ï´Ù.
¢º CHAPTER XV. OF PROGRESSIVE EFFECTS; AND OF THE CONTINUED ACTION OF CAUSES. ¡× 1. In the last four chapters we have traced the general outlines of the theory of the generation of derivative laws from ultimate ones. In the present chapter our attention will be directed to a particular case of the derivation of laws from other laws, but a case so general, and so important, as not only to repay, but to require, a separate examination. This is, the case of a complex phenomenon resulting from one simple law, by the continual addition of an effect to itself. ¢¹ Á¦15Àå Á¡ÁøÀûÀÎ È¿°ú; ±×¸®°í ¿øÀο¡ ´ëÇÑ Áö¼ÓÀûÀÎ Á¶Ä¡. ¡× 1. ¸¶Áö¸· ³× Àå¿¡¼ ¿ì¸®´Â ±Ã±ØÀûÀÎ ¹ýÄ¢À¸·ÎºÎÅÍ ÆÄ»ý¹ýÄ¢ »ý¼º ÀÌ·ÐÀÇ ÀϹÝÀûÀÎ °³¿ä¸¦ ÃßÀûÇß½À´Ï´Ù. ÀÌ Àå¿¡¼ ¿ì¸®´Â ´Ù¸¥ ¹ýÄ¢À¸·ÎºÎÅÍ ¹ýÄ¢ÀÌ ÆÄ»ýµÇ´Â Ưº°ÇÑ °æ¿ì¿¡ ÁÖÀǸ¦ ±â¿ïÀÏ °ÍÀÔ´Ï´Ù. ±×·¯³ª ÀÌ °æ¿ì´Â ¸Å¿ì ÀϹÝÀûÀÌ°í Áß¿äÇÑ °æ¿ìÀ̹ǷΠ»óȯÇÒ »Ó¸¸ ¾Æ´Ï¶ó º°µµÀÇ °ËÅä°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ´Â ÇϳªÀÇ ´Ü¼øÇÑ ¹ýÄ¢À¸·Î ÀÎÇØ ±× ÀÚü¿¡ Áö¼ÓÀûÀ¸·Î È¿°ú°¡ Ãß°¡µÇ´Â º¹ÀâÇÑ Çö»óÀÇ °æ¿ìÀÔ´Ï´Ù.
¢º CHAPTER XVI. OF EMPIRICAL LAWS. ¡× 1. Scientific inquirers give the name of Empirical Laws to those uniformities which observation or experiment has shown to exist, but on which they hesitate to rely in cases varying much from those which have been actually observed, for want of seeing any reason why such a law should exist. It is implied, therefore, in the notion of an empirical law, that it is not an ultimate law; that if true at all, its truth is capable of being, and requires to be, accounted for. It is a derivative law, the derivation of which is not yet known. To state the explanation, the why, of the empirical law, would be to state the laws from which it is derived; the ultimate causes on which it is contingent. And if we knew these, we should also know what are its limits; under what conditions it would cease to be fulfilled. ¢¹ Á¦16Àå °æÇè¹ýÄ¢. ¡× 1. °úÇÐÀû Ž±¸ÀÚ´Â °üÂûÀ̳ª ½ÇÇèÀ» ÅëÇØ Á¸ÀçÇÏ´Â °ÍÀ¸·Î ¹àÇôÁ³Áö¸¸ ½ÇÁ¦·Î °üÂûµÈ °Í°ú Å©°Ô ´Ù¸¥ °æ¿ì¿¡´Â ±×·¯ÇÑ ±ÕÀϼº¿¡ ´ëÇØ °æÇè¹ýÄ¢À̶ó´Â À̸§À» ºÎ¿©ÇÕ´Ï´Ù. ¹ýÀÌ Á¸ÀçÇØ¾ß ÇÕ´Ï´Ù. ±×·¯¹Ç·Î °æÇèÀû ¹ýÄ¢À̶ó´Â °³³ä¿¡´Â ±×°ÍÀÌ ±Ã±ØÀûÀÎ ¹ýÄ¢ÀÌ ¾Æ´Ï¶ó´Â °ÍÀÌ ¾Ï½ÃµÇ¾î ÀÖ½À´Ï´Ù. ¸¸¾à Á¶±ÝÀÌ¶óµµ »ç½ÇÀ̶ó¸é, ±× Áø½ÇÀº ¼³¸íµÉ ¼ö ÀÖ°í ¼³¸íµÉ ÇÊ¿ä°¡ ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù. ¾ÆÁ÷±îÁö ±× À¯·¡°¡ ¾Ë·ÁÁöÁö ¾ÊÀº ÆÄ»ý¹ýÄ¢ÀÌ´Ù. °æÇè¹ýÄ¢¿¡ ´ëÇÑ ¼³¸í°ú ÀÌÀ¯¸¦ ±â¼úÇÏ´Â °ÍÀº ±×°ÍÀÌ ÆÄ»ýµÇ´Â ¹ýÄ¢À» ±â¼úÇÏ´Â °ÍÀÌ µÉ °ÍÀÔ´Ï´Ù. ±×°ÍÀÌ Á¶°ÇºÎ·Î µÇ´Â ±Ã±ØÀûÀÎ ¿øÀÎ. ±×¸®°í ¿ì¸®°¡ ÀÌ°ÍÀ» ¾È´Ù¸é, ±× ÇÑ°è°¡ ¹«¾ùÀÎÁöµµ ¾Ë¾Æ¾ß ÇÕ´Ï´Ù. ¾î¶² Á¶°Ç¿¡¼ ±×°ÍÀº ¼ºÃëµÇÁö ¾ÊÀ» °ÍÀÔ´Ï´Ù.
-¸ñÂ÷(Index)-
¢º ÇÁ·Ñ·Î±×(Prologue). Å׸¶¿©Çà½Å¹® TTN Korea ¿µ¾î°íÀü(English Classics) 1,999¼±À» Àоî¾ß ÇÏ´Â 7°¡Áö ÀÌÀ¯
¢º 14°¡Áö Å°¿öµå·Î Àд Á¸ ½ºÆ©¾îÆ® ¹Ð(John Stuart Mill, 1806~1873)
01. Çö´ë ÀÚÀ¯ÁÖÀÇ(Modern liberalism)¿Í ¸®¹ö·² Æä¹Ì´ÏÁò(Liberal feminism)À» ³ë·¡ÇÑ ¿µ±¹ öÇÐÀÚ(English Philosopher)
02. ³í¸®ÇРü°è(A System of Logic, Ratiocinative and Inductive, 1843)
03. Á¤Ä¡°æÁ¦ÇÐ ¿ø¸®(Principles of Political Economy, 1848)
04. ÀÚÀ¯·Ð(On Liberty, 1859)
05. °ø¸®ÁÖÀÇ(Utilitarianism, 1861)
06. ´ëÀÇÁ¤ºÎ·Ð(Considerations on Representative Government, 1861)
07. ¿©¼ºÀÇ Á¾¼Ó(The Subjection of Women, 1869)
08. Á¸ ½ºÆ©¾îÆ® ¹ÐÀÇ Á÷Á¢ ¾´ ÀÚ¼Àü(The Autobiography of John Stuart Mill, 1873)
09. Á¾±³¿¡ ´ëÇÏ¿©(Three Essays on Religion, 1874)
10. »çȸÁÖÀÇ·Ð(Socialism, 1879)
11. Á¸ ½ºÆ©¾îÆ® ¹Ð ¼±Áý(Collected Works of John Stuart Mill, 1963)
12. Á¸ ½ºÆ©¾îÆ® ¹ÐÀ» ¸¸³¯ ¼ö ÀÖ´Â Àå¼Ò TOP20(20 Places to meet John Stuart Mill)
13. ¿Àµð¿ÀºÏÀ¸·Î µè´Â Á¸ ½ºÆ©¾îÆ® ¹Ð(Audio Books of John Stuart Mill)
14. Á¸ ½ºÆ©¾îÆ® ¹Ð ¾î·Ï 115¼±(115 Quotes of John Stuart Mill)
¢º ¿µ¾î°íÀü1,142 Á¸ ½ºÆ©¾îÆ® ¹ÐÀÇ ³í¸®ÇРü°è Á¦4±Ç 1843(English Classics1,142 A System of Logic: Ratiocinative and Inductive by John Stuart Mill)
Preface To The First Edition.
Preface To The Third And Fourth Editions.
¢º INTRODUCTION.
01. A definition at the commencement of a subject must be provisional
02. Is logic the art and science of reasoning?
03. Or the art and science of the pursuit of truth?
04. Logic is concerned with inferences, not with intuitive truths
05. Relation of logic to the other sciences
06. Its utility, how shown
07. Definition of logic stated and illustrated
¢º BOOK III. ON INDUCTION.?(Continued.)
¢¹ Chapter XIV. Of the Limits to the Explanation of Laws of Nature; and of Hypotheses.
01. Can all the sequences in nature be resolvable into one law?
02. Ultimate laws cannot be less numerous than the distinguishable feelings of our nature
03. In what sense ultimate facts can be explained
04. The proper use of scientific hypotheses
05. Their indispensableness
06. Legitimate, how distinguished from illegitimate hypotheses
07. Some inquiries apparently hypothetical are really inductive
¢¹ Chapter XV. Of Progressive Effects; and of the Continued Action of Causes.
01. How a progressive effect results from the simple continuance of the cause
02. ?and from the progressiveness of the cause
03. Derivative laws generated from a single ultimate law
¢¹ Chapter XVI. Of Empirical Laws.
01. Definition of an empirical law
02. Derivative laws commonly depend on collocations
03. The collocations of the permanent causes are not reducible to any law
04. Hence empirical laws cannot be relied on beyond the limits of actual experience
05. Generalizations which rest only on the Method of Agreement can only be received as empirical laws
06. Signs from which an observed uniformity of sequence may be presumed to be resolvable
07. Two kinds of empirical laws
¢¹ Chapter XVII. Of Chance, and its Elimination.
01. The proof of empirical laws depends on the theory of chance
02. Chance defined and characterized
03. The elimination of chance
04. Discovery of residual phenomena by eliminating chance
05. The doctrine of chances
¢¹ Chapter XVIII. Of the Calculation of Chances.
01. Foundation of the doctrine of chances, as taught by mathematics
02. The doctrine tenable
03. On what foundation it really rests
04. Its ultimate dependence on causation
05. Theorem of the doctrine of chances which relates to the cause of a given event
06. How applicable to the elimination of chance
¢¹ Chapter XIX. Of the Extension of Derivative Laws to Adjacent Cases.
01. Derivative laws, when not casual, are almost always contingent on collocations
02. On what grounds they can be extended to cases beyond the bounds of actual experience
03. Those cases must be adjacent cases
¢¹ Chapter XX. Of Analogy.
01. Various senses of the word analogy
02. Nature of analogical evidence
03. On what circumstances its value depends
¢¹ Chapter XXI. Of the Evidence of the Law of Universal Causation.
01. The law of causality does not rest on an instinct
02. But on an induction by simple enumeration
03. In what cases such induction is allowable
04. The universal prevalence of the law of causality, on what grounds admissible
¢¹ Chapter XXII. Of Uniformities of Coexistence not dependent on Causation.
01. Uniformities of coexistence which result from laws of sequence
02. The properties of Kinds are uniformities of coexistence
03. Some are derivative, others ultimate
04. No universal axiom of coexistence
05. The evidence of uniformities of coexistence, how measured
06. When derivative, their evidence is that of empirical laws
07. So also when ultimate
08. The evidence stronger in proportion as the law is more general
09. Every distinct Kind must be examined
¢¹ Chapter XXIII. Of Approximate Generalizations, and Probable Evidence.
01. The inferences called probable, rest on approximate generalizations
02. Approximate generalizations less useful in science than in life
03. In what cases they may be resorted to
04. In what manner proved
05. With what precautions employed
06. The two modes of combining probabilities
07. How approximate generalizations may be converted into accurate generalizations equivalent to them
¢¹ Chapter XXIV. Of the Remaining Laws of Nature.
01. Propositions which assert mere existence
02. Resemblance, considered as a subject of science
03. The axioms and theorems of mathematics comprise the principal laws of resemblance
04. ?and those of order in place, and rest on induction by simple enumeration
05. The propositions of arithmetic affirm the modes of formation of some given number
06. Those of algebra affirm the equivalence of different modes of formation of numbers generally
07. The propositions of geometry are laws of outward nature
08. Why geometry is almost entirely deductive
09. Function of mathematical truths in the other sciences, and limits of that function
¢¹ Chapter XXV. Of the Grounds of Disbelief.
01. Improbability and impossibility
02. Examination of Hume's doctrine of miracles
03. The degrees of improbability correspond to differences in the nature of the generalization with which an assertion conflicts
04. A fact is not incredible because the chances are against it
05. Are coincidences less credible than other facts?
06. An opinion of Laplace examined
Footnotes:
¢º ºÎ·Ï(Appendix). ¼¼°èÀÇ °íÀüÀ» ¿©ÇàÇÏ´Â È÷Ä¡ÇÏÀÌÄ¿¸¦ À§ÇÑ ¾È³»¼(The Hitchhiker¡¯s Guide to Worlds¡¯s Classics)
A01. ÇϹöµå ¼Á¡(Harvard Book Store) Á÷¿ø Ãßõ µµ¼ 100¼±(Staff¡¯s Favorite 100 Books) & ÆǸŵµ¼ 100À§(Top 100 Books)
A02. ¼¿ï´ë(Seoul University) ±ÇÀåµµ¼ 100
A03. ¿¬¼¼´ë(Yonsei University) Çʵ¶µµ¼ °íÀü 200¼±
A04. °í·Á´ë(Korea University) ¼¼Á¾Ä·ÆÛ½º ±ÇÀåµµ¼ 100¼±
A05. ¼¿ï´ë¡¤¿¬¼¼´ë¡¤°í·Á´ë(SKY University) °øÅë ±ÇÀåµµ¼ 60±Ç
A06. ¼º±Õ°ü´ë(Sungkyunkwan University) ¿À°Å¼(çéó³ßö) ¼º±Õ °íÀü 100¼±
A07. °æÈñ´ë(Kyung Hee University) Èĸ¶´ÏŸ½º Ä®¸®Áö(Humanitas College) ±³¾çÇʵ¶¼ 100¼±
A08. Æ÷½ºÅØ(Æ÷Ç×°ø´ë, POSTECH) ±ÇÀåµµ¼ 100¼±
A09. Ä«À̽ºÆ®(KAIST) µ¶¼¸¶Àϸ®ÁöÁ¦ Ãßõµµ¼ 100±Ç
A10. ¹®Çлó(Literary Awards) ¼ö»óÀÛ ¹× Ãßõµµ¼(44)
A11. ¿µ¾î°íÀü(English Classics) ¿Àµð¿ÀºÏÀ» ¹«·á·Î µè´Â 5°¡Áö ¹æ¹ý(How to listen to FREE audio Books legally?)
A12. ¿µÈ¡¤µå¶ó¸¶·Î ¸¸³ª´Â ¿µ¾î°íÀü(Movies and TV Shows Based on English Classic Books)
¢º Å׸¶¿©Çà½Å¹® TTN Korea ¿µ¾î°íÀü(English Classics) 999¼±
¢º Å׸¶¿©Çà½Å¹® TTN Korea ¿µ¾î°íÀü(English Classics) 1,999¼±
¢º Å׸¶¿©Çà½Å¹® TTN Korea µµ¼¸ñ·Ï(1,991)