ÄÜÅÙÃ÷ »ó¼¼º¸±â
ÆÄÀ̽㠵¥ÀÌÅÍ »çÀ̾𽺠ÇÚµåºÏ


ÆÄÀ̽㠵¥ÀÌÅÍ »çÀ̾𽺠ÇÚµåºÏ

ÆÄÀ̽㠵¥ÀÌÅÍ »çÀ̾𽺠ÇÚµåºÏ

<Á¦ÀÌÅ© ¹ê´õÇ÷¡½º> Àú/<±èÁ¤ÀÎ> ¿ª | À§Å°ºÏ½º

Ãâ°£ÀÏ
2024-09-22
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
20 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

¸¹Àº ¿¬±¸¿ø¿¡°Ô ÆÄÀ̽ãÀº µ¥ÀÌÅ͸¦ ÀúÀå, °¡°øÇÏ°í µ¥ÀÌÅÍ¿¡¼­ ÅëÂû·ÂÀ» ¾òÀ» ¼ö ÀÖ´Â ¶óÀ̺귯¸® ´öºÐ¿¡ µ¥ÀÌÅ͸¦ ´Ù·ç±â¿¡ ÃÖ°íÀÇ µµ±¸·Î ¿©°ÜÁø´Ù. ¿©·¯ Âü°í ÀÚ·á¿¡¼­ ÆÄÀ̽㠶óÀ̺귯¸®¸¦ ¼Ò°³ÇÏÁö¸¸, ´ëºÎºÐÀº °¢ ¶óÀ̺귯¸®¸¦ °³º°ÀûÀ¸·Î ´Ù·é´Ù. ÇÏÁö¸¸ ¡¶ÆÄÀ̽㠵¥ÀÌÅÍ »çÀ̾𽺠ÇÚµåºÏ¡· °³Á¤ÆÇ¿¡¼­´Â IPython, NumPy, Pandas, Matplotlib, Scikit-LearnÀ» ºñ·ÔÇÑ °ü·Ã µµ±¸¸¦ ¸ðµÎ ´Ù·ç¸ç, µ¥ÀÌÅÍ °úÇÐ ¹× ¸Ó½Å·¯´× È°¿ë¿¡ ²À ÇÊ¿äÇÑ µµ±¸¸¦ ¼º°øÀûÀ¸·Î ¼³Á¤ÇÏ°í »ç¿ëÇÏ´Â µ¥ µµ¿òÀÌ µÇ´Â ¸íÈ®ÇÏ°í µû¶ó Çϱ⠽¬¿î ¿¹Á¦¸¦ Á¦°øÇÑ´Ù.

ÆÄÀ̽ã Äڵ带 Àаí ÀÛ¼ºÇÏ´Â µ¥ Àͼ÷ÇÑ °úÇÐÀÚ³ª µ¥ÀÌÅÍ ºÐ¼®°¡¶ó¸é ÀÌ Ã¥ÀÌ µ¥ÀÌÅÍÀÇ °¡°ø, º¯È¯, Á¤Á¦¿Í ´Ù¸¥ À¯ÇüÀÇ µ¥ÀÌÅÍ ½Ã°¢È­, Åë°è ¸ðµ¨À̳ª ¸Ó½Å·¯´× ¸ðµ¨ ±¸ÃàÀ» À§ÇÑ µ¥ÀÌÅÍ È°¿ë ¸é¿¡¼­ ÈçÈ÷ ¹ß»ýÇÏ´Â ¹®Á¦¸¦ ÇØ°áÇϱ⿡ °¡Àå ÀÌ»óÀûÀÎ Á¾ÇÕ Âü°í¼­°¡ µÉ °ÍÀÌ´Ù. °£´ÜÈ÷ ¸»ÇØ, ÀÌ Ã¥Àº ÆÄÀ̽ãÀ¸·Î µ¥ÀÌÅÍ »çÀ̾𽺠ºÐ¾ß¸¦ ¹è¿ì±â À§ÇØ ¹Ýµå½Ã ¼ÒÀåÇØ¾ß ÇÒ Ã¥ÀÌ´Ù. ÀÌ ÇÚµåºÏÀ» ÅëÇØ ´ÙÀ½ µµ±¸ÀÇ »ç¿ë¹ýÀ» ÇнÀÇÒ ¼ö ÀÖ´Ù.

- IPython°ú Jupyter: ÆÄÀ̽ãÀ» ÀÌ¿ëÇÏ´Â µ¥ÀÌÅÍ °úÇÐÀÚ¸¦ À§ÇÑ ÄÄÇ»Æà ȯ°æ Á¦°ø
- NumPy: ÆÄÀ̽ãÀÇ º¹ÀâÇÑ µ¥ÀÌÅÍ ¹è¿­À» È¿À²ÀûÀ¸·Î ÀúÀåÇÏ°í °¡°øÇÒ ¼ö ÀÖ´Â ndarray(n Â÷¿ø ¹è¿­ °´Ã¼) Á¦°ø
- Pandas: ÆÄÀ̽㿡¼­ ·¹À̺íÀÌ ºÙ°Å³ª Ä®·³ Çü½ÄÀÇ µ¥ÀÌÅ͸¦ È¿À²ÀûÀ¸·Î ÀúÀåÇÏ°í °¡°øÇϱâ À§ÇÑ DataFrame ÀڷᱸÁ¶ Á¦°ø
- Matplotlib: ÆÄÀ̽ãÀ» ÀÌ¿ëÇÑ À¯¿¬ÇÑ µ¥ÀÌÅÍ ½Ã°¢È­ ±â´É Á¦°ø
- Scikit-Learn: ±âÁ¸ ¸Ó½Å·¯´× ¾Ë°í¸®Áò Áß °¡Àå Áß¿äÇÑ °ÍÀ» ÆÄÀ̽ãÀ¸·Î È¿À²ÀûÀÌ°í ±ò²ûÇÏ°Ô ±¸ÇöÇÑ ¶óÀ̺귯¸®

ÀúÀÚ¼Ò°³

Á¦ÀÌÅ© ¹ê´õÇ÷¡½º´Â ÆÄÀ̽㠰úÇÐ ½ºÅÃÀÇ Àå±â »ç¿ëÀÚÀÌÀÚ °³¹ßÀÚ´Ù. ÇöÀç ¿ö½ÌÅÏ ´ëÇб³ÀÇ ÇÐÁ¦°£ ¿¬±¸ ºÎÀåÀ¸·Î ±Ù¹«Çϸ鼭 µ¶ÀÚÀûÀΠõ¹®ÇÐ ¿¬±¸¸¦ ¼öÇàÇÏ°í ÀÖÀ¸¸ç ´Ù¾çÇÑ ºÐ¾ßÀÇ °úÇÐÀÚ¿Í ÇÔ²² »ó´ã ¹× ÄÁ¼³ÆÃÀ» ÁøÇàÇÏ°í ÀÖ´Ù.

¸ñÂ÷

1Àå: Jupyter - ÆÄÀ̽㿡 ³¯°³¸¦ ´ÞÀÚ

IPython°ú Jupyter ½ÃÀÛÇϱâ
__IPython ¼Ð ½ÇÇàÇϱâ
__Jupyter ³ëÆ®ºÏ ½ÇÇàÇϱâ
__IPythonÀÇ µµ¿ò¸»°ú ¹®¼­
__IPython ¼Ð¿¡¼­ »ç¿ëÇÒ ¼ö ÀÖ´Â Å°º¸µå ´ÜÃàÅ°
Çâ»óµÈ ´ëÈ­Çü ±â´É
__IPython ¸ÅÁ÷ ¸í·É¾î
__ÀÔ·Â/Ãâ·Â ÀÌ·Â
__IPython°ú ¼Ð ¸í·É¾î
µð¹ö±ë ¹× ÇÁ·ÎÆÄÀϸµ
__¿¡·¯¿Í µð¹ö±ë
__ÄÚµå ÇÁ·ÎÆÄÀϸµ ¹× ½Ã°£ ÃøÁ¤
__IPython Ãß°¡ Âü°í ÀÚ·á

2Àå: NumPy ¼Ò°³

ÆÄÀ̽ãÀÇ µ¥ÀÌÅÍ Å¸ÀÔ ÀÌÇØÇϱâ
__ÆÄÀ̽ã Á¤¼ö´Â Á¤¼ö ÀÌ»óÀÌ´Ù
__ÆÄÀ̽㠸®½ºÆ®´Â ¸®½ºÆ® ÀÌ»óÀÌ´Ù
__ÆÄÀ̽ãÀÇ °íÁ¤ ŸÀÔ ¹è¿­
__ÆÄÀ̽㠸®½ºÆ®¿¡¼­ ¹è¿­ ¸¸µé±â
__óÀ½ºÎÅÍ ¹è¿­ ¸¸µé±â
__NumPy Ç¥ÁØ µ¥ÀÌÅÍ Å¸ÀÔ
NumPy ¹è¿­ÀÇ ±âÃÊ
__NumPy ¹è¿­ ¼Ó¼º ÁöÁ¤
__¹è¿­ À妽Ì: ´ÜÀÏ ¿ä¼Ò¿¡ Á¢±ÙÇϱâ
__¹è¿­ ½½¶óÀ̽Ì: ÇÏÀ§ ¹è¿­¿¡ Á¢±ÙÇϱâ
__¹è¿­ À籸Á¶È­
__¹è¿­ ¿¬°á ¹× ºÐÇÒ
NumPy ¹è¿­ ¿¬»ê: À¯´Ï¹ö¼³ ÇÔ¼ö
__·çÇÁ´Â ´À¸®´Ù
__Ufuncs ¼Ò°³
__NumPy À¯´Ï¹ö¼³ ÇÔ¼ö(Ufuncs)
__°í±Þ Ufunc ±â´É
__Ufuncs: ´õ ¾Ë¾Æº¸±â
Áý°è: ÃÖ¼Ú°ª, ÃÖ´ñ°ª, ±×¸®°í ±×»çÀÌÀÇ ¸ðµç °Í
__¹è¿­ÀÇ °ªÀÇ ÇÕ ±¸Çϱâ
__ÃÖ¼Ú°ª°ú ÃÖ´ñ°ª
__¿¹Á¦: ¹Ì±¹ ´ëÅë·ÉÀÇ Æò±Õ ½ÅÀåÀº ¾ó¸¶Àϱî?
¹è¿­ ¿¬»ê: ºê·Îµåij½ºÆÃ
__ºê·Îµåij½ºÆà ¼Ò°³
__ºê·Îµåij½ºÆà ±ÔÄ¢
__½ÇÀü ºê·Îµåij½ºÆÃ
ºñ±³, ¸¶½ºÅ©, ºÎ¿ï ·ÎÁ÷
__¿¹Á¦: ºñ¿Â ³¯ ¼¼±â
__ufuncÀ¸·Î¼­ÀÇ ºñ±³ ¿¬»êÀÚ
__ºÎ¿ï ¹è¿­·Î ÀÛ¾÷Çϱâ
__¸¶½ºÅ©·Î¼­ÀÇ ºÎ¿ï ¹è¿­
__Å°¿öµå and/or vs. ¿¬»êÀÚ &/| »ç¿ëÇϱâ
Æҽà À妽Ì
__Æҽà Àε¦½Ì ¾Ë¾Æº¸±â
__°áÇÕ À妽Ì
__¿¹Á¦: ÀÓÀÇÀÇ Á¡ ¼±ÅÃÇϱâ
__Æҽà À妽ÌÀ¸·Î °ª º¯°æÇϱâ
__¿¹Á¦: µ¥ÀÌÅÍ ±¸°£È­
¹è¿­ Á¤·Ä
__NumPyÀÇ ºü¸¥ Á¤·Ä: np.sort¿Í np.argsort
__ÇàÀ̳ª ¿­ ±âÁØÀ¸·Î Á¤·ÄÇϱâ
__ºÎºÐ Á¤·Ä: ÆÄƼ¼Ç ³ª´©±â
__¿¹Á¦: k-ÃÖ±ÙÁ¢ ÀÌ¿ô ¾Ë°í¸®Áò
±¸Á¶È­µÈ µ¥ÀÌÅÍ: NumPyÀÇ ±¸Á¶È­µÈ ¹è¿­
__±¸Á¶È­µÈ ¹è¿­ ¸¸µé±â
__°í±Þ º¹ÇÕ Å¸ÀÔ
__·¹ÄÚµå ¹è¿­: Æ®À§½ºÆ®¸¦ °¡Áø ±¸Á¶È­µÈ ¹è¿­
__Pandas·Î ³Ñ¾î°¡¸ç

3Àå: Pandas·Î µ¥ÀÌÅÍ °¡°øÇϱâ

Pandas °´Ã¼ ¼Ò°³
__Pandas Series °´Ã¼
__Pandas DataFrame °´Ã¼
__Pandas Index °´Ã¼
µ¥ÀÌÅÍ Àε¦½Ì°ú ¼±ÅÃ
__Series¿¡¼­ µ¥ÀÌÅÍ ¼±ÅÃ
__DataFrame¿¡¼­ µ¥ÀÌÅÍ ¼±ÅÃ
Pandas¿¡¼­ µ¥ÀÌÅÍ ¿¬»êÇϱâ
__À¯´Ï¹ö¼³ ÇÔ¼ö: À妽º º¸Á¸
__À¯´Ï¹ö¼³ ÇÔ¼ö: À妽º Á¤·Ä
__À¯´Ï¹ö¼³ ÇÔ¼ö: DataFrame°ú Series °£ÀÇ ¿¬»ê
´©¶ôµÈ µ¥ÀÌÅÍ Ã³¸®Çϱâ
__´©¶ôµÈ µ¥ÀÌÅÍ Ã³¸® ¹æ½ÄÀÇ Æ®·¹À̵å¿ÀÇÁ
__Pandas¿¡¼­ ´©¶ôµÈ µ¥ÀÌÅÍ
__PandasÀÇ ³Î·¯ºí(Nullable) µ¥ÀÌÅÍ Å¸ÀÔ
__³Î °ª ¿¬»êÇϱâ
°èÃþÀû À妽Ì
__´ÙÁß À妽ºµÈ Series
__MultiIndex »ý¼º ¸Þ¼­µå
__MultiIndex Àε¦½Ì ¹× ½½¶óÀ̽Ì
__´ÙÁß À妽º ÀçÁ¤·ÄÇϱâ
µ¥ÀÌÅͼ¼Æ® °áÇÕ: Concat°ú Append
__º¹½À: NumPy ¹è¿­ ¿¬°á
__pd.concatÀ» ÀÌ¿ëÇÑ °£´ÜÇÑ ¿¬°á
µ¥ÀÌÅͼ¼Æ® °áÇÕÇϱâ: º´ÇÕ°ú Á¶ÀÎ
__°ü°è ´ë¼ö
__Á¶ÀÎ ÀÛ¾÷ÀÇ ºÐ·ù
__º´ÇÕ Å° ÁöÁ¤
__Á¶ÀÎÀ» À§ÇÑ ÁýÇÕ ¿¬»ê ÁöÁ¤Çϱâ
__¿­ À̸§ÀÌ °ãÄ¡´Â °æ¿ì: suffixes Å°¿öµå
__¿¹Á¦: ¹Ì±¹ ÁÖ µ¥ÀÌÅÍ
Áý°è¿Í ºÐ·ù
__Ç༺ µ¥ÀÌÅÍ
__PandasÀÇ °£´ÜÇÑ Áý°è ¿¬»ê
__GroupBy: ºÐÇÒ, Àû¿ë, °áÇÕ
Çǹþ Å×À̺í
__Çǹþ Å×ÀÌºí ½ÃÀÛ
__Çǹþ Å×ÀÌºí µîÀå ¹è°æ
__Çǹþ Å×ÀÌºí ±¸¹®
__¿¹Á¦: Ãâ»ý·ü µ¥ÀÌÅÍ
º¤ÅÍÈ­µÈ ¹®ÀÚ¿­ ¿¬»ê
__Pandas ¹®ÀÚ¿­ ¿¬»ê ¼Ò°³
__Pandas ¹®ÀÚ¿­ ¸Þ¼­µå ¸ñ·Ï
__¿¹Á¦: Á¶¸®¹ý µ¥ÀÌÅͺ£À̽º
½Ã°è¿­ ´Ù·ç±â
__ÆÄÀ̽㿡¼­ÀÇ ³¯Â¥¿Í ½Ã°£
__Pandas ½Ã°è¿­: ½Ã°£À¸·Î À妽ÌÇϱâ
__Pandas ½Ã°è¿­ µ¥ÀÌÅÍ ±¸Á¶
__Á¤±Ô ½ÃÄö½º: pd.date_range()
__ÁÖ±â¿Í ¿ÀÇÁ¼Â
__¸®»ùÇøµ, ½ÃÇÁÆÃ, À©µµÀ×
__¿¹Á¦: ½Ã¾ÖƲ ÀÚÀü°Å ¼ö ½Ã°¢È­
°í¼º´É Pandas: eval()°ú query()
__query()¿Í eval()ÀÇ µîÀå ¹è°æ: º¹ÇÕ Ç¥Çö½Ä
__È¿À²ÀûÀÎ ¿¬»êÀ» À§ÇÑ pandas.eval()
__¿­ ´ÜÀ§ÀÇ ¿¬»êÀ» À§ÇÑ DataFrame.eval()
__DataFrame.query() ¸Þ¼­µå
__¼º´É: ÀÌ ÇÔ¼ö¸¦ »ç¿ëÇØ¾ß ÇÏ´Â °æ¿ì
__Ãß°¡ ÀÚ·á

04Àå: MatplotlibÀ» È°¿ëÇÑ ½Ã°¢È­

ÀϹÝÀûÀÎ Matplotlib »ç¿ë¹ý
__matplotlib ÀÓÆ÷Æ®Çϱâ
__½ºÅ¸ÀÏ ¼³Á¤Çϱâ
__show()¸¦ »ç¿ëÇÒ °ÍÀΰ¡, ¸» °ÍÀΰ¡ - ÇÃ·Ô Ç¥Çö ¹æ¹ý
°£´ÜÇÑ ¶óÀÎ Ç÷Ô
__ÇÃ·Ô ¼öÁ¤Çϱâ: ¼± »ö»ó°ú ½ºÅ¸ÀÏ
__ÇÃ·Ô Á¶Á¤Çϱâ: Ãà °æ°è
__Ç÷Կ¡ ·¹ÀÌºí ºÙÀ̱â
__Matplotlib ÁÖÀÇ»çÇ×
°£´ÜÇÑ »êÁ¡µµ
__plt.plotÀ» »ç¿ëÇÑ »êÁ¡µµ
__plt.scatter¸¦ È°¿ëÇÑ »êÁ¡µµ
__plot°ú scatterÀÇ Â÷ÀÌ: È¿À²¼º Ãø¸é¿¡¼­ À¯ÀÇÇÒ Á¡
__¿ÀÂ÷ ½Ã°¢È­Çϱâ
¹Ðµµ Ç÷԰ú µî°í¼± Ç÷Ô
__3Â÷¿ø ÇÔ¼ö ½Ã°¢È­Çϱâ
__È÷½ºÅä±×·¥, ±¸°£È­, ¹Ðµµ
__2Â÷¿ø È÷½ºÅä±×·¥°ú ±¸°£È­
ÇÃ·Ô ¹ü·Ê ¸ÂÃã º¯°æÇϱâ
__¹ü·Ê¿¡ »ç¿ëÇÒ ¿ä¼Ò ¼±ÅÃÇϱâ
__Á¡ Å©±â¿¡ ´ëÇÑ ¹ü·Ê
__´ÙÁß ¹ü·Ê
»ö»ó ¸·´ë ¸ÂÃã º¯°æÇϱâ
__»ö»ó ¸·´ë ¸ÂÃã º¯°æÇϱâ
__¿¹Á¦: ¼ÕÀ¸·Î ¾´ ¼ýÀÚ
´ÙÁß ¼­ºêÇ÷Ô
__plt.axes: Á÷Á¢ ¸¸µç ¼­ºêÇ÷Ô
__plt.subplot: °£´ÜÇÑ ¼­ºêÇ÷ÔÀÇ ±×¸®µå
__plt.subplots: ÇÑ ¹ø¿¡ Àüü ±×¸®µå ¸¸µé±â
__plt.GridSpec: º¹ÀâÇÑ ¹èÄ¡
ÅؽºÆ®¿Í ÁÖ¼®
__¿¹Á¦: ¹Ì±¹ Ãâ»ý·ü¿¡ ÈÞÀÏÀÌ ¹ÌÄ¡´Â ¿µÇâ
__º¯È¯ ¹× ÅؽºÆ® À§Ä¡
__È­»ìÇ¥¿Í ÁÖ¼®
´«±Ý ¸ÂÃã º¯°æÇϱâ
__ÁÖ ´«±Ý°ú º¸Á¶ ´«±Ý
__´«±Ý ¶Ç´Â ·¹ÀÌºí ¼û±â±â
__´«±Ý °³¼ö ÁÙÀ̱â¿Í ´Ã¸®±â
__Æҽà ´«±Ý Æ÷¸Ë
__À§Ä¡ Áö½ÃÀÚ¿Í ¼­½Ä Áö½ÃÀÚ ¿ä¾à
Matplotlib ¸ÂÃ㺯°æÇϱâ: ¼³Á¤°ú ½ºÅ¸ÀϽÃÆ®
__Á÷Á¢ ÇÃ·Ô º¯°æÇϱâ
__±âº»°ª º¯°æÇϱâ: rcParams
__½ºÅ¸ÀϽÃÆ®
Matplotlib¿¡¼­ 3Â÷¿ø Ç÷ÎÆÃÇϱâ
__3Â÷¿ø Á¡°ú ¼±
__3Â÷¿ø µî°í¼± Ç÷Ô
__¿ÍÀ̾îÇÁ·¹ÀÓ°ú Ç¥¸éµµ
__Ç¥¸é »ï°¢Ãø·®¹ý
SeabornÀ» È°¿ëÇÑ ½Ã°¢È­
__Seaborn ÇÃ·Ô Å½»öÇϱâ
__¿¹Á¦: ¸¶¶óÅæ ¿ÏÁÖ ½Ã°£ Ž»ö
__Ãß°¡ ÀÚ·á
__±âŸ ÆÄÀ̽㠱׷¡ÇÈ ¶óÀ̺귯¸®

5Àå: ¸Ó½Å·¯´×

¸Ó½Å·¯´×À̶õ ¹«¾ùÀΰ¡?
__¸Ó½Å·¯´×ÀÇ ¹üÁÖ
__¸Ó½Å·¯´× ÀÀ¿ëÀÇ Á¤¼ºÀû »ç·Ê
__Á¤¸®
Scikit-Learn ¼Ò°³
__Scikit-Learn¿¡¼­ÀÇ µ¥ÀÌÅÍ Ç¥Çö ¹æ½Ä
__Estimator API
__ÀÀ¿ë: ¼ÕÀ¸·Î ¾´ ¼ýÀÚ Å½»ö
__Á¤¸®
Ãʸð¼ö¿Í ¸ðµ¨ °ËÁõ
__¸ðµ¨ °ËÁõ¿¡ ´ëÇÑ °í·Á»çÇ×
__ÃÖÀûÀÇ ¸ðµ¨ ¼±ÅÃÇϱâ
__ÇнÀ °î¼±
__½ÇÁ¦ °ËÁõ: ±×¸®µå °Ë»ö
__Á¤¸®
Ư¡ °øÇÐ
__¹üÁÖ Æ¯Â¡
__ÅؽºÆ® Ư¡
__À̹ÌÁö Ư¡
__À¯µµ Ư¡
__´©¶ô µ¥ÀÌÅÍÀÇ ´ëü
__Ư¡ ÆÄÀÌÇÁ¶óÀÎ
½ÉÈ­ ÇнÀ: ³ªÀÌºê º£ÀÌÁî ºÐ·ù
__º£ÀÌÁî ºÐ·ù
__°¡¿ì½º ³ªÀÌºê º£ÀÌÁî
__´ÙÇ׺ÐÆ÷ ³ªÀÌºê º£ÀÌÁî
__¾ðÁ¦ ³ªÀÌºê º£ÀÌÁî ¸ðµ¨À» »ç¿ëÇÒ °ÍÀΰ¡
½ÉÈ­ ÇнÀ: ¼±Çü ȸ±Í
__´Ü¼ø ¼±Çü ȸ±Í
__±âÀú ÇÔ¼ö ȸ±Í
__Á¤±ÔÈ­
__¿¹Á¦: ÀÚÀü°Å ÅëÇà·® ¿¹Ãø
½ÉÈ­ ÇнÀ: ¼­Æ÷Æ® º¤ÅÍ ¸Ó½Å
__¼­Æ÷Æ® º¤ÅÍ ¸Ó½ÅÀÇ µ¿±â
__¼­Æ÷Æ® º¤ÅÍ ¸Ó½Å: ¸¶Áø ÃÖ´ëÈ­
__¿¹Á¦: ¾È¸é ÀνÄ
__Á¤¸®
½ÉÈ­ ÇнÀ: ÀÇ»ç°áÁ¤ Æ®¸®¿Í ·£´ý Æ÷·¹½ºÆ®
__·£´ý Æ÷·¹½ºÆ® µîÀå ¹è°æ: ÀÇ»ç°áÁ¤ Æ®¸®
__ÃßÁ¤ ¸ðµ¨ÀÇ ¾Ó»óºí: ·£´ý Æ÷·¹½ºÆ®
__·£´ý Æ÷·¹½ºÆ® ȸ±Í
__¿¹Á¦: ·£´ý Æ÷·¹½ºÆ®¸¦ »ç¿ëÇÑ ¼ýÀÚ ºÐ·ù
__Á¤¸®
½ÉÈ­ ÇнÀ: ÁÖ¼ººÐ ºÐ¼®
__ÁÖ¼ººÐ ºÐ¼® ¼Ò°³
__PCA ÀÀ¿ë: ³ëÀÌÁî ÇÊÅ͸µ
__¿¹Á¦: °íÀ¯¾ó±¼
__Á¤¸®
½ÉÈ­ ÇнÀ: ´Ù¾çü ÇнÀ
__´Ù¾çü ÇнÀ: ¡®HELLO¡¯
__´ÙÂ÷¿ø ôµµ¹ý(MDS, Multidimensional Sacling)
__ºñ¼±Çü ´Ù¾çü ÇнÀ: ±¹¼Ò ¼±Çü ÀÓº£µù
__´Ù¾çü ¹æ½Ä¿¡ ´ëÇÑ ¸î °¡Áö »ý°¢
__¿¹Á¦: ¾ó±¼ µ¥ÀÌÅÍ¿¡ ¾ÆÀÌ¼Ò¸Ê Àû¿ë
__¿¹Á¦: ¼ýÀÚ µ¥ÀÌÅÍÀÇ ±¸Á¶ ½Ã°¢È­
½ÉÈ­ ÇнÀ: k-Æò±Õ ±ºÁýÈ­
__k-Æò±Õ ¼Ò°³
__±â´ñ°ª-ÃÖ´ëÈ­
__¿¹Á¦
½ÉÈ­ ÇнÀ: °¡¿ì½º È¥ÇÕ ¸ðµ¨
__GMM µîÀå ¹è°æ: k-Æò±ÕÀÇ ¾àÁ¡
__E-M ´Ü°è ÀϹÝÈ­Çϱâ: °¡¿ì½º È¥ÇÕ ¸ðµ¨
__°øºÐ»ê À¯Çü ¼±ÅÃÇϱâ
__¹Ðµµ ÃßÁ¤¿¡ GMM »ç¿ëÇϱâ
__¿¹Á¦: »õ·Î¿î µ¥ÀÌÅ͸¦ »ý¼ºÇÏ´Â GMM
½ÉÈ­ ÇнÀ: Ä¿³Î ¹Ðµµ ÃßÁ¤
__KDE µîÀå ¹è°æ: È÷½ºÅä±×·¥
__Ä¿³Î ¹Ðµµ ÃßÁ¤ÀÇ ½ÇÁ¦ Àû¿ë
__±³Â÷ °ËÁõÀ» ÅëÇÑ ´ë¿ªÆø ¼±ÅÃ
__¿¹Á¦: ³ªÀ̺êÇÏÁö ¾ÊÀº º£ÀÌÁî(Not-So-Naive Bayes)
ÀÀ¿ë: ¾È¸é ÀÎ½Ä ÆÄÀÌÇÁ¶óÀÎ
__HOG Ư¡
__½ÇÁ¦ HOG: °£´ÜÇÑ ¾È¸é Àνıâ
__ÁÖÀÇ»çÇ× ¹× °³¼±»çÇ×
__¸Ó½Å·¯´× °ü·Ã Ãß°¡ ÀÚ·á