ÄÜÅÙÃ÷ »ó¼¼º¸±â
The Essential Guide to Competition Math Fundamentals Plus


The Essential Guide to Competition Math Fundamentals Plus

The Essential Guide to Competition Math Fundamentals Plus

<À¯Çϸ²> Àú | Ç츣¸óÇϿ콺

Ãâ°£ÀÏ
2024-09-25
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
3 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

À¯Çϸ² Ä¿¸®Å§·³ Essential Math Series °æ½Ã ½ÃÇè ´ëºñ¸¦ À§ÇÑ Ã¥ Áß AMC 10(12), CEMC, ARML Local, Purple Comet Math Meet¿Í °°Àº ½ÃÇèÀ» ´ëºñÇÏ´Â ±³ÀçÀÌ´Ù. AMC 10À» ½ÃÀÛÇÏ´Â 8, 9, 10Çгâ Çѱ¹ ÇлýµéÀÌ AIME QualificationÀ» ¹Þ±â À§ÇØ °øºÎÇØ¾ß ÇÏ´Â Çʵ¶¼­°¡ µÇ±æ ¹Ù¶ó´Â ¸¶À½À¸·Î ÁýÇÊÇÏ¿´´Ù. ÇöÀç ¹Ì±¹ ¸í¹® Boarding School ¹× ±¹³»¿Ü ¿Ü±¹ÀÎÇб³¿¡ ´Ù´Ï´Â 8, 9, 10Çгâ ÇлýµéÀÌ AMC 10(12) ¹× ´Ù¸¥ °æ½Ã ½ÃÇè¿¡¼­ ½ÇÁ¦·Î Àû±ØÀûÀ¸·Î »ç°í(think)ÇÏ°í, ¹®Á¦ Ç®ÀÌÀÇ ¹æÇâÀ» ÀâÀ» ¼ö ÀÖ±æ ¹Ù¶ó¸é¼­ Ã¥À» ½è´Ù.

ÀúÀÚ¼Ò°³

¹Ì±¹ Northwestern University, B.A. in Mathematics and Economics (³ë½º¿þ½ºÅÏ ´ëÇб³ ¼öÇаú/°æÁ¦Çаú Á¹¾÷). ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°­»ç, ¾Ð±¸Á¤ ÇöÀå°­ÀÇ ReachPrep ¿øÀå.
°íµîÇб³ ½ÃÀý ¹®°ú¿´´Ù°¡, ¹Ì±¹ ³ë½º¿þ½ºÅÏ ´ëÇб³ ÇкΠ½ÃÀý ÀçÇÐ Áß ¼öÇп¡ ¸Å·áµÇ¾î, Calculus ¹× Multivariable Calculus Á¶±³ È°µ¿ ¹× ¼öÇÐ °­ÀÇ È°µ¿À» ÇØ¿Â ¹®/ÀÌ°ú¸¦ ¾Æ¿ì¸£´Â µ¶Æ¯ÇÑ ÀÌ·ÂÀ» °¡Áø °­»çÀÌ´Ù. ÇöÀç ¾Ð±¸Á¤ ¹Ì±¹¼öÇÐ/°úÇÐÀü¹® ÇпøÀ¸·Î ReachPrep(¸®Ä¡ÇÁ·¾)À» ¿î¿µ ÁßÀ̸ç, ¹Ì±¹ ¸í¹® º¸µù½ºÄð Çлýµé°ú ±¹³» ¿Ü±¹ÀÎÇб³ ¹× ±¹Á¦Çб³ ÇлýµéÀ» ²ÙÁØÈ÷ ÁöµµÇϸ鼭 ¸í¼ºÀ» ½×¾Æ°¡°í ÀÖ´Ù. 2010³â ÀÚ±âÁÖµµÇнÀ¼­ÀÎ ¡°¸ôÀÔ°øºÎ¡±¸¦ ÁýÇÊÇÑ ÀÌÈÄ, ¹Ì±¹ Áß°í±³¼öÇп¡ °ü½ÉÀ» º» °ÝÀûÀ¸·Î °¡Áö°Ô µÇ¾ú°í, ÇöÀç À¯Çϸ²Ä¿¸®Å§·³ Essential Math Series¸¦ ÁýÇÊÇÏ¿©, ¾Ð±¸Á¤ ÇöÀå°­ÀÇ ¹Ì±¹¼öÇÐÇÁ¸®Æнº¸¦ ÅëÇØ, ¾ÐµµÀûÀ¸·Î ¸¹Àº ÇлýµéÀÇ Çǵå¹éÀ» ÅëÇØ, ¹ßÀüÀûÀ¸·Î ±³Àç ÁýÇÊ¿¡ Èû¾²°í ÀÖ´Ù. À¯ÇÐºÐ¾ß ÀÎÅÍ³Ý °­ÀÇ 1À§ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾ ¼öÇпµ¿ª ´ëÇ¥°­»ç Áß ÇÑ ¸íÀ¸·Î ¹Ì±¹ ¼öÇÐ Ä¿¸®Å§·³ÀÇ ±âÃʼöÇкÎÅÍ °æ½Ã¼öÇбîÁö ¸ðµÎ ¿µ¾î¿Í Çѱ¹¾î·Î °­ÀÇÇϸ鼭, ½ÇÀü °æÇèÀ» ½×¾Æ ±× Àü¹®¼ºÀ» È®°íÈ÷ ÇÏ°í ÀÖ´Ù.

¸ñÂ÷

Preface 3
ÀÌ Ã¥ÀÇ Æ¯Â¡ 4

Preface 3
ÀÌ Ã¥ÀÇ Æ¯Â¡ 4

Topic 1 Beginning with Combinatorics 9

1.1 Multiplication and Addition Principle...........................10
1.2 Principle of Inclusion and Exclusion............................12
1.3 Practices.........................................................................13

Topic 2 Continuing with Combinatorics 47

2.1 Case enumeration and Complements............................48
2.2 Indistinguishables and Distinguishables.......................50
2.2.1 Permutation Allowing Repetitions........................50
2.2.2 Partition of Sets....................................................50
2.2.3 Combination Allowing Repetitions.......................51
2.2.4 Partition of Natural Numbers...............................51
2.3 Practices.........................................................................53

Topic 3 Ending with Combinatorics 83

3.1 Probability with Restrictions.........................................84
3.2 More about Probability..................................................86
3.3 Practices.........................................................................88

Topic 4 Beginning with Number Theory 127

4.1 Divisors and Remainders...............................................128
4.2 Parity and Modular Arithmetic......................................130
4.3 Practices.........................................................................131

Topic 5 Ending with Number Theory 157

5.1 Divisibility and Modular Arithmetic..............................158
5.2 Chinese Remainder Theorem........................................160
5.3 Base Expression and Modular Expression....................161
5.4 Practices.........................................................................162

Topic 6 Beginning with Geometry 191

6.1 Basic Guidelines for Plane Geometry Problems...........192
6.2 Angle Bisector and Perpendicular Bisector...................195
6.3 Practices.........................................................................196

Topic 7 Ending with Geometry 219

7.1 Quadrilaterals and Cyclic Quadrilaterals.......................220
7.2 Circles............................................................................221
7.3 Practices.........................................................................222

Topic 8 More About Algebra 2 / Precalculus 245

8.1 About Polynomials.........................................................246
8.2 Maximum and Minimum...............................................248
8.3 Floor Function...............................................................249
8.4 Sequence and Series......................................................250
8.5 Using Trigonometry for Angle Equations......................251
8.6 Complex Plane Geometry and Vectors..........................252
8.7 Practices.........................................................................255