? ¿ë¾î»çÀü ½Ã¸®Áî ?´Â °¢ ºÐ¾ßÀÇ ¿ë¾î¸¦ ü°èÀûÀ¸·Î Á¤¸®ÇÏ°í ¼³¸íÇÏ´Â µ¥ ÁßÁ¡À» µÐ Àü¹® »çÀüÀÔ´Ï´Ù. ÀÌ Ã¥Àº ÇØ´ç ºÐ¾ßÀÇ Àü¹®°¡»Ó¸¸ ¾Æ´Ï¶ó Çлý, ¿¬±¸¿ø, ÀÏ¹Ý µ¶ÀÚ ¸ðµÎ¿¡°Ô À¯¿ëÇÑ Âü°í¼°¡ µÉ °ÍÀÔ´Ï´Ù. °¢ ¿ë¾î´Â ¸íÈ®ÇÑ Á¤ÀÇ¿Í ÇÔ²² »ç¿ë ¿¹½Ã, °ü·Ã °³³ä µîÀ» Æ÷ÇÔÇÏ°í ÀÖ¾î, µ¶ÀÚµéÀÌ ¿ë¾îÀÇ Á¤È®ÇÑ ÀÇ¹Ì¿Í ¸Æ¶ôÀ» ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù. ¶ÇÇÑ, ÃÖ½ÅÀÇ Á¤º¸¸¦ ¹Ý¿µÇÏ¿© º¯ÈÇÏ´Â Áö½Ä°ú ±â¼úÀ» Ãæ½ÇÈ÷ ´ã¾Æ³»°í ÀÖ½À´Ï´Ù. ? ¿ë¾î»çÀü ½Ã¸®Áî ?´Â µ¶ÀÚµéÀÌ º¸´Ù ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖµµ·Ï °£°áÇÏ°í ¸íÈ®ÇÑ ¼¼ú ¹æ½ÄÀ» äÅÃÇÏ°í ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ´Ù¾çÇÑ ºÐ¾ß¿¡¼ ½ÇÁúÀûÀ¸·Î È°¿ëµÉ ¼ö ÀÖ´Â ½Ç¿ëÀûÀÎ Âü°í¼·Î ÀÚ¸®¸Å±èÇÒ °ÍÀÔ´Ï´Ù. ÀÌ ½Ã¸®Áî´Â µ¶Àڵ鿡°Ô ±íÀÌ ÀÖ´Â ÀÌÇØ¿Í Æø³ÐÀº Áö½ÄÀ» Á¦°øÇÏ¿©, ÇнÀ°ú ¿¬±¸, ½Ç¹«¿¡ ÀÖ¾î ±ÍÁßÇÑ ÀÚ¿øÀÌ µÉ °ÍÀÔ´Ï´Ù.
¸ñÂ÷
1. ³íÁõ(argument) 6
2. ÀüÁ¦(premise) 7
3. °á·Ð(conclusion) 8
4. ³í¸®(logic) 9
5. Ãß·Ð(inference) 10
6. ¿¬¿ª(deduction) 11
7. ±Í³³(induction) 12
8. °¡¼³(hypothesis) 13
9. ³í¸®Àû ¿À·ù(fallacy) 14
10. Çü½Ä³í¸®(formal logic) 15
11. ºñÇü½Ä³í¸®(informal logic) 16
12. ¸íÁ¦(proposition) 17
13. ¾çÈ»ç(quantifier) 18
14. ¼ú¾î(predicate) 19
15. ÁÖ¾î(subject) 20
16. ³í¸®Àû Ÿ´ç¼º(logical validity) 21
17. Áø¸®°ª(truth value) 22
18. Á¤¾ð¸í·É(categorical imperative) 23
19. Á¶°Ç¹®(conditional statement) 24
20. ÀÌÇ×³í¸®(bivalent logic) 25
21. »ï´Ü³í¹ý(syllogism) 26
22. ±Í·ù¹ý(reductio ad absurdum) 27
23. ¸íÁ¦³í¸®(propositional logic) 28
24. ¼ú¾î³í¸®(predicate logic) 29
25. ³í¸®¿¬»êÀÚ(logical operator) 30
26. ¾çÈ»ç(quantifier) 31
27. °ø¸®(axiom) 32
28. Á¤¸®(theorem) 33
29. Áõ¸í(proof) 34
30. ¸íÁ¦Àû ŵµ(propositional attitude) 35
31. ¿¬¿ªÀû Ÿ´ç¼º(deductive validity) 36
32. Âü(truth) 37
33. °ÅÁþ(false) 38
34. Á¶°Ç(condition) 39
35. ÇÊ¿äÁ¶°Ç(necessary condition) 40
36. ÃæºÐÁ¶°Ç(sufficient condition) 41
37. ³í¸®Àû µ¿Ä¡(logical equivalence) 42
38. ³í¸®Àû ÇÊ¿¬¼º(logical necessity) 43
39. ³í¸®Àû °¡´É¼º(logical possibility) 44
40. ¿ªÃß·Ð(abduction) 45
41. ±Í³³Àû ÀϹÝÈ(inductive generalization) 46
42. ºñ¿¬¿ªÀû Ãß·Ð(non-deductive inference) 47
43. Ãß·Ð ±ÔÄ¢(rule of inference) 48
44. ¸ðµå½º Æ÷³Ù½º(Modus Ponens) 49
45. ¸ðµå½º Åç·»½º(Modus Tollens) 50
46. ±àÁ¤Àû °áÇÕ(affirming the consequent) 51
47. ºÎÁ¤Àû Àü°Ç(denying the antecedent) 52
48. ¼±Çü³í¸®(linear logic) 53
49. ºñ¸ð¼øÀ²(law of non-contradiction) 54
50. ¹èÁßÀ²(law of excluded middle) 55
51. ¸íÁ¦ ÇÔÀÇ(propositional implication) 56
52. ³í¸®Àû ÇÊ¿äÁ¶°Ç(logical necessity condition) 57
53. ³í¸®Àû ÃæºÐÁ¶°Ç(logical sufficiency condition) 58
54. ³í¸®Àû ±Í°á(logical consequence) 59
55. ¸íÁ¦ ¿¬»ê(propositional operation) 60
56. ³í¸®Àû ¿¬»êÀÚ(logical connectives) 61
57. Áø¸® ÇÔ¼ö(truth function) 62
58. Áø¸®Ç¥(truth table) 63
59. ³í¸®Àû ÇÔÃà(logical implication) 64
60. ³í¸®Àû ºñÇÔÃà(logical non-implication) 65
61. ³í¸®Àû ÀÏ°ü¼º(logical consistency) 66
62. ³í¸®Àû ¸ð¼ø(logical contradiction) 67
63. ³í¸®Àû ºñ¸ð¼ø(logical non-contradiction) 68
64. ³í¸®Àû µ¶¸³¼º(logical independence) 69
65. ³í¸®Àû Á¾¼Ó¼º(logical dependence) 70
66. ³í¸®Àû µ¿Àϼº(logical identity) 71
67. ³í¸®Àû ºñµ¿Àϼº(logical non-identity) 72
68. ³í¸®Àû ºÒÈ®Á¤¼º(logical indeterminacy) 73
69. ³í¸®Àû ÇÊ¿¬¼º(logical necessity) 74
70. ³í¸®Àû ºÒ°¡´É¼º(logical impossibility) 75
71. ³í¸®Àû ¿ì¿¬¼º(logical contingency) 76
72. ³í¸®Àû ¸íÁ¦(logical proposition) 77
73. ³í¸®Àû ¿¬¿ª(logical deduction) 78
74. ³í¸®Àû ±Í³³(logical induction) 79
75. ³í¸®Àû ºÐ¼®(logical analysis) 80
76. ³í¸®Àû ¿À·ù(logical fallacy) 81
77. ³í¸®Àû Á¤´çÈ(logical justification) 82
78. ³í¸®Àû Áõ¸í(logical proof) 83
79. ³í¸®Àû Çؼ®(logical interpretation) 84
80. ³í¸®Àû Ç¥Çö(logical expression) 85
81. ³í¸®Àû Á¤ÀÇ(logical definition) 86
82. ³í¸®Àû ±¸¹®(logical syntax) 87
83. ³í¸®Àû Àǹ̷Ð(logical semantics) 88
84. ³í¸®Àû ü°è(logical system) 89
85. ³í¸®Àû ¿ø¸®(logical principle) 90
86. ³í¸®Àû ±ÔÄ¢(logical rule) 91
87. ³í¸®Àû »ç°í(logical thinking) 92
88. ³í¸®Àû ÀÏ°ü¼º(logical coherence) 93
89. ³í¸®Àû ±¸Á¶(logical structure) 94
90. ³í¸®Àû ¸íÁ¦(logical proposition) 95
91. ³í¸®Àû ±¸¼º(logical construction) 96
92. ³í¸®Àû Áõ°Å(logical evidence) 97
93. ³í¸®Àû °ËÁõ(logical verification) 98
94. ³í¸®Àû È®½Ç¼º(logical certainty) 99
95. ³í¸®Àû Á¤È®¼º(logical precision) 100
96. ³í¸®Àû ¸ð¼ø(logical contradiction) 101
97. ³í¸®Àû ºñ¸ð¼ø(logical non-contradiction) 102
98. ³í¸®Àû Áõ¸í(logical proof) 103
99. ³í¸®Àû ¿ø¸®(logical principle) 104
100. ³í¸®Àû ±ÔÄ¢(logical rule) 105