ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼ ¹è¿ì´Â ¼öÇÐÀº ¼¾ç¿¡¼ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼¿¡¼ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼¾ç¿¡¼ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ ¸ñÂ÷>
ADVANCED MATH II
CHAPTER 1 COMPLEX NUMBERS AND POLAR ...
1 THE POLAR FORM OF A COMPLEX NUMBER
1.1 THE COMPLEX PLANE
1.2 THE POLAR FORM OF A COMPLEX NUMBER
1.3 DE MOIVRE'S THEOREM
2 POLAR COORDINATES AND POLAR EQUATIONS
2.1 POLAR COORDINATES AND THE POLAR ...
2.2 THE RELATIONSHIP BETWEEN RECTANGULAR ...
2.3 GRAPHS OF POLAR EQUATIONS
CHAPTER 2 APPLICATIONS OF CALCULUS
3 APPLICATIONS OF DIFFERENTIATION
3.1 CAUCHY'S MEAN VALUE THEOREM
3.2 TAYLOR SERIES
3.3 TAYLOR POLYNOMIALS
4 DIFFERENTIAL EQUATIONS
4.1 BASIC CONCEPTS
4.2 FIRST-ORDER ODEs
4.3 SECOND-ORDER ODEs
5 APPLICATIONS OF INTEGRATION
5.1 AREA BOUNDED BY POLAR CURVES
5.2 VOLUMES OF REVOLUTION
5.3 AREAS OF SURFACES OF REVOLUTION
5.4 MOMENTS AND CENTERS OF MASS
CHAPTER 3 PARTIAL DIFFERENTIATION
6 THE CONCEPT OF FUNCTIONS OF TWO ...
6.1 FUNCTIONS OF TWO VARIABLES AND LEVEL ...
6.2 DRAWING GRAPHS FOR FUNCTION OF TWO ...
7 LIMITS AND CONTINUITY
7.1 THE CONCEPT OF LIMITS OF FUNCTIONS OF ...
7.2 PROPERTIES OF LIMITS OF FUNCTIONS OF ...
7.3 CONTINUITY OF FUNCTIONS OF TWO ...
8 PARTIAL DIFFERENTIATION
8.1 PARTIAL DERIVATIVES AND PARTIAL ...
8.2 SECOND PARTIAL DERIVATIVES
8.3 THE CHAIN RULE IN PARTIAL DIFFERENTIATION
9 APPLICATIONS OF PARTIAL DIFFERENTIATION
9.1 THE CONCEPT OF GRADIENT
9.2 GRADIENT AND TANGENT PLANES
9.3 LOCAL EXTREMA OF FUNCTIONS OF TWO ...
9.4 MAX/MIN PROBLEMS
<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
°í±Þ¼öÇÐ II
Á¦ 1 Àå º¹¼Ò¼ö¿Í ±ØÁÂÇ¥
1 º¹¼Ò¼öÀÇ ±ØÇü½Ä
1.1 º¹¼ÒÆò¸é
1.2 º¹¼Ò¼öÀÇ ±ØÇü½Ä
1.3 µå ¹«¾Æºê¸£ÀÇ Á¤¸®
2 ±ØÁÂÇ¥¿Í ±Ø¹æÁ¤½Ä
2.1 ±ØÁÂÇ¥¿Í ±ØÁÂÇ¥°è
2.2 Á÷±³ÁÂÇ¥¿Í ±ØÁÂÇ¥ÀÇ °ü°è
2.3 ±Ø¹æÁ¤½ÄÀÇ ±×·¡ÇÁ
Á¦ 2 Àå ¹ÌÀûºÐÀÇ È°¿ë
3 ¹ÌºÐÀÇ È°¿ë
3.1 ÄÚ½ÃÀÇ Æò±Õ°ª Á¤¸®
3.2 Å×ÀÏ·¯ ±Þ¼ö
3.3 Å×ÀÏ·¯ ´ÙÇ×½Ä
4 ¹ÌºÐ¹æÁ¤½Ä
4.1 ±âº» °³³ä
4.2 ÀÏ°è »ó¹ÌºÐ¹æÁ¤½Ä
4.3 ÀÌ°è ¹ÌºÐ¹æÁ¤½Ä
5 ÀûºÐÀÇ È°¿ë
5.1 ±Ø°î¼±À¸·Î µÑ·¯½ÎÀÎ ¿µ¿ªÀÇ ³ÐÀÌ
5.2 ȸÀüüÀÇ ºÎÇÇ
5.3 ȸÀü°î¸éÀÇ ³ÐÀÌ
5.4 ¸ð¸àÆ®¿Í Áú·®Áß½É
Á¦ 3 Àå Æí¹ÌºÐ
6 À̺¯¼öÇÔ¼ö
6.1 À̺¯¼öÇÔ¼ö¿Í µîÀ§°î¼±
6.2 À̺¯¼öÇÔ¼öÀÇ ±×·¡ÇÁ ±×¸®±â
7 ±ØÇÑ°ú ¿¬¼Ó
7.1 À̺¯¼öÇÔ¼öÀÇ ±ØÇÑÀÇ ¶æ
7.2 À̺¯¼öÇÔ¼öÀÇ ±ØÇÑÀÇ ¼ºÁú
7.3 À̺¯¼öÇÔ¼öÀÇ ¿¬¼Ó°ú ±× ¼ºÁú
8 Æí¹ÌºÐ
8.1 Æí¹ÌºÐ°è¼ö¿Í ÆíµµÇÔ¼ö
8.2 ÀÌ°è ÆíµµÇÔ¼ö
8.3 Æí¹ÌºÐ¿¡¼ÀÇ ¿¬¼â¹ýÄ¢
9 Æí¹ÌºÐÀÇ È°¿ë
9.1 ±×·¡µð¾ðÆ®ÀÇ ¶æ
9.2 ±×·¡µð¾ðÆ®¿Í Á¢Æò¸é
9.3 À̺¯¼öÇÔ¼öÀÇ ±Ø°ª
9.4 ÃÖ´ë/ÃÖ¼Ò ¹®Á¦