ÄÜÅÙÃ÷ »ó¼¼º¸±â
±âÇÏ¿Í º¤ÅÍ ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ


±âÇÏ¿Í º¤ÅÍ ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ

±âÇÏ¿Í º¤ÅÍ ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ

<Å©¸®½º> Àú | ÀλçÀ̵å·è

Ãâ°£ÀÏ
2017-02-20
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
4 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼­ ¹è¿ì´Â ¼öÇÐÀº ¼­¾ç¿¡¼­ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼­ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼­´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼­¿¡¼­ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼­¾ç¿¡¼­ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼­¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼­ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼­ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.

¸ñÂ÷

<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ ¸ñÂ÷>
GEOMETRY AND VECTORS

CHAPTER 1 PLANE CURVES / QUADRATIC CURVES

1 PARABOLAS - DEFINITIONS AND EQUATIONS
1.1 DEFINITIONS OF PARABOLAS
1.2 STANDARD EQUATIONS OF PARABOLAS WITH ...
1.3 GENERAL FORM OF THE EQUATIONS OF A ...
1.4 LOCUS PROBLEMS
2 ELLIPSES - DEFINITIONS AND EQUATIONS
2.1 DEFINITIONS OF ELLIPSES
2.2 STANDARD FORM OF THE EQUATION OF AN ...
2.3 GENERAL EQUATIONS OF AN ELLIPSE
2.4 LOCUS PROBLEMS
3 HYPERBOLAS - DEFINITIONS AND EQUATIONS
3.1 DEFINITIONS OF HYPERBOLAS
3.2 EQUATION OF A HYPERBOLA WITH CENTER ...
3.3 INFERRING THE SHAPE OF THE HYPERBOLA
3.4 GENERAL EQUATION OF A HYPERBOLA
3.5 LOCUS PROBLEMS
4 TANGENT TO A PLANE CURVE
4.1 IMPLICIT DIFFERENTIATION
4.2 POSITIONAL RELATIONSHIPS OF A PARABOLA ...
4.3 POSITIONAL RELATIONSHIPS OF AN ELLIPSE ...
4.4 POSITIONAL RELATIONSHIPS OF A HYPERBOLA ..
4.5 PARAMETRIC DIFFERENTIATION
4.6 EQUATION OF THE TANGENT LINE TO THE ...

CHAPTER 2 VECTORS IN THE PLANE

5 VECTOR OPERATIONS
5.1 DEFINITION OF A VECTOR AND NOTATIONS
5.2 ADDITION, SUBTRACTION, AND SCALAR ...
6 COMPONENTS OF A VECTOR AND DOT ...
6.1 COMPONENTS OF A VECTOR IN THE PLANE
6.2 DOT PRODUCT OF TWO VECTORS IN THE PLANE
6.3 APPLICATIONS OF THE DOT PRODUCT
6.4 VECTOR EQUATIONS OF LINES AND CIRCLES IN ..
7 MOTION IN A PLANE
7.1 VELOCITY AND ACCELERATION
7.2 VELOCITY AND DISTANCE

CHAPTER 3 SPACE FIGURES AND VECTORS IN SPACE

8 SPACE FIGURES
8.1 POINTS, LINES, AND PLANES
8.2 THEOREM OF THE THREE PERPENDICULARS
8.3 ORTHOGONAL PROJECTION
8.4 APPLICATION PROBLEMS
9 SPACE COORDINATES
9.1 COORDINATES OF A POINT IN SPACE
9.2 DISTANCE BETWEEN TWO POINTS IN SPACE
9.3 DIVISION OF A LINE SEGMENT IN SPACE
9.4 EQUATION OF A SPHERE
10 VECTORS IN SPACE
10.1 DEFINITION OF A VECTOR IN SPACE AND ...
10.2 DOT PRODUCT OF TWO SPACE VECTORS
10.3 EQUATIONS OF LINES IN SPACE
10.4 EQUATIONS OF PLANES

<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
±âÇÏ¿Í º¤ÅÍ

Á¦ 1 Àå Æò¸é°î¼± / ÀÌÂ÷°î¼±

1 Æ÷¹°¼±ÀÇ ¶æ°ú ¹æÁ¤½Ä
1.1 Æ÷¹°¼±ÀÇ Á¤ÀÇ
1.2 ²ÀÁþÁ¡ÀÌ (0,0)ÀÎ Æ÷¹°¼±ÀÇ ¹æÁ¤½Ä Ç¥ÁØÇü
1.3 Æ÷¹°¼±ÀÇ ¹æÁ¤½ÄÀÇ ÀϹÝÇü
1.4 ÀÚÃë ¹®Á¦
2 Ÿ¿øÀÇ ¶æ°ú ¹æÁ¤½Ä
2.1 Ÿ¿øÀÇ Á¤ÀÇ
2.2 Ÿ¿øÀÇ ¹æÁ¤½ÄÀÇ Ç¥ÁØÇü
2.3 Ÿ¿øÀÇ ¹æÁ¤½ÄÀÇ ÀϹÝÇü
2.4 ÀÚÃë ¹®Á¦
3 ½Ö°î¼±ÀÇ ¶æ°ú ¹æÁ¤½Ä
3.1 ½Ö°î¼±ÀÇ Á¤ÀÇ
3.2 ¿øÁ¡ÀÌ Áß½ÉÀÎ ½Ö°î¼±ÀÇ ¹æÁ¤½Ä - ¼öÆòÃà
3.3 ½Ö°î¼±ÀÇ ¸ð¾ç ÃßÃø
3.4 ½Ö°î¼±ÀÇ ¹æÁ¤½ÄÀÇ ÀϹÝÇü
3.5 ÀÚÃë ¹®Á¦
4 Æò¸é°î¼±ÀÇ Á¢¼±
4.1 À½ÇÔ¼öÀÇ ¹ÌºÐ¹ý
4.2 Æ÷¹°¼±°ú Á÷¼ºÀÇ À§Ä¡°ü°è
4.3 Ÿ¿ø°ú Á÷¼±ÀÇ À§Ä¡°ü°è
4.4 ½Ö°î¼±°ú Á÷¼±ÀÇ À§Ä¡°ü°è
4.5 ¸Å°³º¯¼ö·Î ³ªÅ¸³½ ÇÔ¼öÀÇ ¹ÌºÐ¹ý
4.6 ÀÌÂ÷°î¼±¿¡ ´ëÇÑ Á¢¼±ÀÇ ¹æÁ¤½Ä (¿ä¾à)

Á¦ 2 Àå Æò¸éº¤ÅÍ

5 º¤ÅÍÀÇ ¿¬»ê
5.1 º¤ÅÍÀÇ Á¤ÀÇ¿Í Ç¥±â¹ý
5.2 º¤ÅÍÀÇ µ¡¼À, »¬¼À°ú ½Ç¼ö¹è
6 Æò¸éº¤ÅÍÀÇ ¼ººÐ°ú ³»Àû
6.1 Æò¸éº¤ÅÍÀÇ ¼ººÐ
6.2 µÎ Æò¸éº¤ÅÍÀÇ ³»Àû
6.3 º¤ÅÍÀÇ ³»ÀûÀÇ È°¿ë
6.4 ÁÂÇ¥Æò¸é¿¡¼­ÀÇ Á÷¼±°ú ¿øÀÇ º¤Å͹æÁ¤½Ä
7 Æò¸é¿îµ¿
7.1 ¼Óµµ¿Í °¡¼Óµµ
7.2 ¼Óµµ¿Í °Å¸®

Á¦ 3 Àå °ø°£µµÇü°ú °ø°£º¤ÅÍ

8 °ø°£µµÇü
8.1 Á¡, ¼±, ±×¸®°í Æò¸é
8.2 »ï¼ö¼±ÀÇ Á¤¸®
8.3 Á¤»ç¿µ
8.4 ÀÀ¿ë ¹®Á¦µé
9 °ø°£ÁÂÇ¥
9.1 °ø°£¿¡¼­ Á¡ÀÌ ÁÂÇ¥
9.2 °ø°£¿¡¼­ µÎ Á¡ »çÀÌÀÇ °Å¸®
9.3 °ø°£¿¡¼­ ¼±ºÐÀÇ ºÐÁ¡
9.4 ±¸ÀÇ ¹æÁ¤½Ä
10 °ø°£º¤ÅÍ
10.1 °ø°£º¤ÅÍÀÇ Á¤ÀÇ¿Í º¤ÅÍÀÇ ¿¬»ê
10.2 µÎ °ø°£º¤ÅÍÀÇ ³»Àû
10.3 °ø°£¿¡¼­ÀÇ Á÷¼±ÀÇ ¹æÁ¤½Ä
10.4 Æò¸éÀÇ ¹æÁ¤½Ä