ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼ ¹è¿ì´Â ¼öÇÐÀº ¼¾ç¿¡¼ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼¿¡¼ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼¾ç¿¡¼ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ>
CALCULUS II
CHAPTER 1 EXPONENTIAL AND LOGARITHMIC ...
1 DEFINITIONS AND GRAPHS OF EXPONENTIAL ...
1.1 DEFINITIONS OF EXPONENTIAL AND ...
1.2 GRAPHING EXPONENTIAL AND LOGARITHMIC ...
1.3 APPLICATIONS OF EXPONENTIAL AND ...
2 DIFFERENTIATION OF EXPONENTIAL AND ...
2.1 LIMITS OF EXPONENTIAL AND LOGARITHMIC ...
2.2 DIFFERENTIATION OF EXPONENTIAL AND ...
CHAPTER 2 TRIGONOMETRIC FUNCTIONS
3 DEFINITIONS AND GRAPHS OF ...
3.1 GENERAL ANGLES AND RADIAN MEASURE
3.2 CONCEPTS OF TRIGONOMETRIC FUNCTIONS
3.3 GRAPHS OF TRIGONOMETRIC FUNCTIONS
3.4 PROPERTIES OF TRIGONOMETRIC FUNCTIONS
3.5 APPLICATIONS OF TRIGONOMETRIC FUNCTIONS
4 DIFFERENTIATION OF TRIGONOMETRIC ...
4.1 ADDITION THEOREMS FOR TRIGONOMETRIC ...
4.2 LIMITS OF TRIGONOMETRIC FUNCTIONS
4.3 DIFFERENTIATION OF THE SINE AND COSINE ...
CHAPTER 3 METHODS OF DIFFERENTIATION
5 VARIOUS DIFFERENTIATION RULES
5.1 QUOTIENT RULE
5.2 COMPOSITION-FUNCTION RULE (CHAIN RULE)
5.3 DIFFERENTIATION OF INVERSE FUNCTIONS
5.4 SECOND AND HIGHER DERIVATIVES
6 APPLICATIONS OF DERIVATIVES
6.1 EQUATION OF THE TANGENT LINE
6.2 CURVE SKETCHING
6.3 EQUATIONS, INEQUALITIES, AND ...
6.4 RELATED RATES PROBLEMS
CHAPTER 4 METHODS OF INTEGRATION
7 VARIOUS INTEGRATION RULES
7.1 INDEFINITE AND DEFINITE INTEGRALS OF ...
7.2 INDEFINITE AND DEFINITE INTEGRALS OF ...
7.3 INDEFINITE INTEGRALS OF EXPONENTIAL ...
7.4 INTEGRATION BY SUBSTITUTION
7.5 INTEGRATION BY PARTS
7.6 DEFFERENTIATING FUNCTIONS DEFINED BY ...
8 APPLICATIONS OF DEFINITE INTEGRALS
8.1 AREAS
8.2 VOLUMES
8.3 RELATED RATES PROBLEMS
<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
¹ÌÀûºÐ II
Á¦ 1 Àå Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼ö
1 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ¶æ°ú ±×·¡ÇÁ
1.1 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ Á¤ÀÇ
1.2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ±×·¡ÇÁ
1.3 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ È°¿ë
2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ¹ÌºÐ
2.1 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ±ØÇÑ
2.2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ¹ÌºÐ
Á¦ 2 Àå »ï°¢ÇÔ¼ö
3 »ï°¢ÇÔ¼öÀÇ ¶æ°ú ±×·¡ÇÁ
3.1 ÀϹݰ¢°ú È£µµ¹ý
3.2 »ï°¢ÇÔ¼öÀÇ °³³ä
3.3 »ï°¢ÇÔ¼öÀÇ ±×·¡ÇÁ
3.4 »ï°¢ÇÔ¼öÀÇ ¼ºÁú
3.5 »ï°¢ÇÔ¼öÀÇ È°¿ë
4 »ï°¢ÇÔ¼öÀÇ ¹ÌºÐ
4.1 »ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸®
4.2 »ï°¢ÇÔ¼öÀÇ ±ØÇÑ
4.3 »çÀÎÇÔ¼ö¿Í ÄÚ»çÀÎÇÔ¼öÀÇ ¹ÌºÐ
Á¦ 3 Àå ¹Ì ºÐ ¹ý
5 ¿©·¯ °¡Áö ¹ÌºÐ¹ý
5.1 ¸òÀÇ ¹ÌºÐ¹ý
5.2 ÇÕ¼ºÇÔ¼öÀÇ ¹ÌºÐ¹ý (¿¬¼â¹ýÄ¢)
5.3 ¿ªÇÔ¼öÀÇ ¹ÌºÐ¹ý
5.4 ÀÌ°èµµÇÔ¼ö¿Í °í°èµµÇÔ¼ö
6 µµÇÔ¼öÀÇ È°¿ë
6.1 Á¢¼±ÀÇ ¹æÁ¤½Ä
6.2 ±×·¡ÇÁÀÇ °³Çü
6.3 ¹æÁ¤½Ä, ºÎµî½Ä°ú ¹ÌºÐ
6.4 ¿¬°üµÈ ºñÀ²¹®Á¦
Á¦ 4 Àå Àû ºÐ ¹ý
7 ¿©·¯ °¡Áö ÀûºÐ¹ý
7.1 y=x^n (n Àº ½Ç¼ö) ÀÇ ºÎÁ¤ÀûºÐ°ú Á¤ÀûºÐ
7.2 »ï°¢ÇÔ¼öÀÇ ºÎÁ¤ÀûºÐ°ú Á¤ÀûºÐ
7.3 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ºÎÁ¤ÀûºÐ
7.4 ġȯÀûºÐ¹ý
7.5 ºÎºÐÀûºÐ¹ý
7.6 Á¤ÀûºÐÀ¸·Î Á¤ÀÇµÈ ÇÔ¼öÀÇ ¹ÌºÐ
8 Á¤ÀûºÐÀÇ È°¿ë
8.1 ³ÐÀÌ
8.2 ºÎÇÇ
8.3 ¿¬°üµÈ ºñÀ²¹®Á¦