ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼ ¹è¿ì´Â ¼öÇÐÀº ¼¾ç¿¡¼ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼¿¡¼ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼¾ç¿¡¼ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ ¸ñÂ÷>
CALCULUS I
CHAPTER 1 LIMITS OF SEQUENCES
1 LIMITS OF INFINITE SEQUENCES
1.1 CONVERGENCE AND DIVERGENCE OF ...
1.2 PROPERTIES FOR INFINITE SEQUENCES
1.3 LIMITS OF INFINITE GEOMETRIC SEQUENCES
2 INFINITE SERIES
2.1 CONVERGENCE AND DIVERGENCE OF ...
2.2 INFINITE GEOMETRIC SERIES
2.3 APPLICATIONS OF INFINITE GEOMETRIC SERIES
CHAPTER 2 LIMITS AND CONTINUITY OF A FUNCTION
3 LIMITS OF A FUNCTION
3.1 CONCEPT OF LIMITS
3.2 PROPERTIES OF LIMITS
4 CONTINUITY OF A FUCTION
4.1 CONTINUITY
4.2 PROPERTIES OF CONTINUOUS FUNCTIONS
CHAPTER 3 DIFFERENTIATION OF POLYNOMIALS
5 DERIVATIVES (OR DIFFERNTIAL COEFFICIENTS)
5.1 CONCEPT OF THE DERIVATIVE ...
5.2 GEOMETRIC INTERPRETATION OF ...
6 DERIVATIVE FUNCTIONS
6.1 DERIVATIVE OF =x^n ...
6.2 SUM-DIFFERENCE RULE AND PRODUCT RULE
6.3 DIFFERENTIABILITY AND CONTINUITY
7 APPLICATIONS OF DERIVATIVES
7.1 EQUATION OF THE TANGENT LINE
7.2 MEAN VALUE THEOREM
7.3 INCREASE AND DECREASE OF A FUNCTION
7.4 LOCAL MAXIMUM AND MINIMUM OF A FUNCTION
7.5 CURVE SKETCHING
7.6 EQUATIONS, INEQUALITIES, AND ...
7.7 VELOCITY AND ACCELERATION
CHAPTER 4 INTEGRATION OF POLYNOMIALS
8 INDEFINITE INTEGRAL
8.1 CONCEPTS OF INDEFINITE INTEGRAL
8.2 RULES OF OPERATION ON ...
8.3 ESTIMATION OF THE POPULATION PROPORTION
9 DEFINITE INTEGRAL
9.1 AREAS AND VOLUMES BY SLICES
9.2 DEFINITION OF THE DEFINITE INTEGRAL
9.3 RELATIONSHIP BETWEEN INDEFINITE ...
9.4 COMPUTING DEFINITE INTEGRALS
10 APPLICATIONS OF DEFINITE INTEGRALS
10.1 AREAS
10.2 VELOCITIES AND DISTANCES
<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
¹ÌÀûºÐ I
Á¦ 1 Àå ¼ö¿ÀÇ ±ØÇÑ
1 ¹«ÇѼö¿ÀÇ ±ØÇÑ
1.1 ¹«ÇѼö¿ÀÇ ¼ö·Å°ú ¹ß»ê
1.2 ¼ö¿ÀÇ ±ØÇÑ°ªÀÇ ¼ºÁú
1.3 ¹«Çѵîºñ¼ö¿ÀÇ ±ØÇÑ
2 ¹«Çѱ޼ö
2.1 ¹«Çѱ޼öÀÇ ¼ö·Å°ú ¹ß»ê
2.2 ¹«Çѵîºñ±Þ¼ö
2.3 ¹«Çѵîºñ±Þ¼öÀÇ È°¿ë
Á¦ 2 Àå ÇÔ¼öÀÇ ±ØÇÑ°ú ¿¬¼Ó
3 ÇÔ¼öÀÇ ±ØÇÑ
3.1 ±ØÇÑÀÇ °³³ä
3.2 ±ØÇÑÀÇ ¼ºÁú
4 ÇÔ¼öÀÇ ¿¬¼Ó
4.1 ¿¬¼Ó¼º
4.2 ¿¬¼ÓÇÔ¼öÀÇ ¼ºÁú
Á¦ 3 Àå ´ÙÇ×ÇÔ¼öÀÇ ¹ÌºÐ¹ý
5 ¹ÌºÐ°è¼ö
5.1 ¹ÌºÐ°è¼öÀÇ °³³ä
5.2 ¹ÌºÐ°è¼öÀÇ ±âÇÏÇÐÀû Çؼ®
6 µµÇÔ¼ö
6.1 y=x^n (´Ü, n Àº ¾çÀÇ Á¤¼ö)ÀÇ µµÇÔ¼ö
6.2 ÇÕ-Â÷ÀÇ ¹ÌºÐ¹ý°ú °öÀÇ ¹ÌºÐ¹ý
6.3 ¹ÌºÐ°¡´É¼º°ú ¿¬¼Ó¼º
7 µµÇÔ¼öÀÇ È°¿ë
7.1 Á¢¼±ÀÇ ¹æÁ¤½Ä
7.2 Æò±Õ°ª Á¤¸®
7.3 ÇÔ¼öÀÇ Áõ°¡¿Í °¨¼Ò
7.4 ÇÔ¼öÀÇ ±Ø´ë¿Í ±Ø¼Ò
7.5 ±×·¡ÇÁÀÇ °³Çü
7.6 ¹æÁ¤½Ä, ºÎµî½Ä°ú ¹ÌºÐ
7.7 ¼Óµµ¿Í °¡¼Óµµ
Á¦ 4 Àå ´ÙÇ×ÇÔ¼öÀÇ ÀûºÐ¹ý
8 ºÎÁ¤ÀûºÐ
8.1 ºÎÁ¤ÀûºÐÀÇ °³³ä
8.2 ºÎÁ¤ÀûºÐÀÇ ¿¬»ê¹ýÄ¢
9 Á¤ÀûºÐ
9.1 ±¸ºÐ±¸Àû¹ý
9.2 Á¤ÀûºÐÀÇ Á¤ÀÇ
9.3 ºÎÁ¤ÀûºÐ°ú Á¤ÀûºÐÀÇ °ü°è
9.4 Á¤ÀûºÐÀÇ °è»ê
10 Á¤ÀûºÐÀÇ È°¿ë
10.1 ³ÐÀÌ
10.2 ¼Óµµ¿Í °Å¸®