ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼ ¹è¿ì´Â ¼öÇÐÀº ¼¾ç¿¡¼ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼¿¡¼ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼¾ç¿¡¼ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ ¸ñÂ÷>
PROBABILITY AND STATISTICS
CHAPTER 1 PERMUTATIONS AND COMBINATIONS
1 BASIC COUNTING PRINCIPLES
1.1 SUM AND PRODUCT RULES
2 PERMUTATIONS AND COMBINATIONS
2.1 PERMUTATIONS
2.2 COMBINATIONS
2.3 CIRCULAR PERMUTATIONS, PERMUTATIONS WITH REPETITION, AND PERMUTATIONS INVOLVING IDENTICAL OBJECTS
2.4 COMBINATIONS WITH REPETITION
3 PARTITIONS
3.1 PARTITIONS OF A SET
3.2 PARTITIONS OF POSITIVE INTEGERS
4 THE BINOMIAL THEOREM
4.1 THE BINOMIAL THEOREM
4.2 APPLICATIONS OF THE BINOMIAL THEOREM
CHAPTER 2 PROBABILITY
5 DEFINITION OF PROBABILITY AND APPLICATIONS
5.1 MATHEMATICAL AND STATISTICAL PROBABILITY
5.2 BASIC PROPERTIES OF PROBABILITY
5.3 ADDITION RULE OF PROBABILITY
5.4 PROBABILITY OF COMPLEMENTARY EVENTS
6 CONDITIONAL PROBABILIT
6.1 DEFINITION OF CONDITIONAL PROBABILITY
6.2 INDEPENDENT AND DEPENDENT EVENTS
6.3 MULTIPLICATION RULE OF PROBABILITY
CHAPTER 3 STATISTICS
7 PROBABILITY DISTRIBUTIONS
Introduction to Statistics
: Mean, Median, Mode and Range
7.1 RANDOM VARIABLES AND PROBABILITY DISTRIBUTION
7.2 EXPECTED VALUES AND STANDARD DEVIATIONS OF RANDOM VARIABLES
7.3 BINOMIAL DISTRIBUTIONS
7.4 DEFINITION AND PROPERTIES OF NORMAL DISTRIBUTION
8 STATISTICAL ESTIMATION
8.1 POPULATION AND SAMPLES / SAMPLE MEANS
8.2 ESTIMATION OF THE POPULATION MEAN
8.3 ESTIMATION OF THE POPULATION PROPORTION
<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
È®·ü°ú Åë°è
Á¦ 1 Àå ¼ø¿°ú Á¶ÇÕ
1 °æ¿ìÀÇ ¼ö
1.1 ÇÕÀÇ ¹ýÄ¢°ú °öÀÇ ¹ýÄ¢
2 ¼ø¿°ú Á¶ÇÕ
2.1 ¼ø¿
2.2 Á¶ÇÕ
2.3 ¿ø¼ø¿, Áߺ¹¼ø¿, °°Àº °ÍÀÌ ÀÖ´Â ¼ø¿
2.4 Áߺ¹Á¶ÇÕ
3 ºÐ ÇÒ
3.1 ÁýÇÕÀÇ ºÐÇÒ
3.2 ÀÚ¿¬¼öÀÇ ºÐÇÒ
4 ÀÌÇ×Á¤¸®
4.1 ÀÌÇ×Á¤¸®
4.2 ÀÌÇ×Á¤¸®ÀÇ È°¿ë
Á¦ 2 Àå È® ·ü
5 È®·üÀÇ ¶æ°ú È°¿ë
5.1 ¼öÇÐÀû È®·ü°ú Åë°èÀû È®·ü
5.2 È®·üÀÇ ±âº» ¼ºÁú
5.3 È®·üÀÇ µ¡¼ÀÁ¤¸®
5.4 ¿©»ç°ÇÀÇ È®·ü
6 ¼ö¿ÀÇ ÇÕ
6.1 Á¶°ÇºÎ È®·üÀÇ Á¤ÀÇ
6.2 µ¶¸³»ç°Ç°ú Á¾¼Ó»ç°Ç
6.3 È®·üÀÇ °ö¼ÀÁ¤¸®
Á¦ 3 Àå Åë °è
7 È®·üºÐÆ÷
»çÀüÁö½Ä Á¤¸®: Æò±Õ, Áß¾Ó°ª, ÃÖºó°ª, ¹üÀ§
7.1 È®·üº¯¼ö¿Í È®·üºÐÆ÷
7.2 È®·üº¯¼öÀÇ ±â´ñ°ª°ú Ç¥ÁØÆíÂ÷
7.3 ÀÌÇ׺ÐÆ÷
7.4 Á¤±ÔºÐÆ÷ÀÇ Á¤ÀÇ¿Í ¼ºÁú
8 Åë°èÀû ÃßÁ¤
8.1 ¸ðÁý´Ü°ú Ç¥º»/Ç¥º»Æò±Õ
8.2 ¸ðÆò±ÕÀÇ ÃßÁ¤
8.3 ¸ðºñÀ²ÀÇ ÃßÁ¤