ÄÜÅÙÃ÷ »ó¼¼º¸±â
¼öÇÐ I ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ


¼öÇÐ I ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ

¼öÇÐ I ¿µ¾î¼öÇÐ.ÇѱۼöÇÐ ¿À!¼öÇÐ

<Å©¸®½º> Àú | ÀλçÀ̵å·è

Ãâ°£ÀÏ
2017-02-20
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
4 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼­ ¹è¿ì´Â ¼öÇÐÀº ¼­¾ç¿¡¼­ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼­ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼­´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼­¿¡¼­ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼­¾ç¿¡¼­ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼­¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2009°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼­ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼­ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.

¸ñÂ÷

<¿ÞÂÊÆäÀÌÁö ¿µ¾î¼öÇÐ ¸ñÂ÷>
MATHEMATICS I

CHAPTER 1 POLYNOMIALS

1 POLYNOMIALS AND OPERATIONS

1.1 ADDING AND SUBTRACTING POLYNOMIALS
1.2 MULTIPLYING AND DIVIDING POLYNOMIALS

2 THE REMAINDER THEOREM

2.1 IDENTICAL EQUATIONS AND THE METHOD OF UNDETERMINED COEFFICIENTS
2.2 REMAINDER THEOREM

3 FACTORING

3.1 BASIC CONCEPT
3.2 SPECIAL FACTORING FORMULAS
3.3 FACTORING POLYNOMIALS

4 DIVISORS AND MULTIPLES / SYSTEM OF NUMERATION

4.1 DIVISORS AND MULTIPLES OF POLYNOMIALS
4.2 SYSTEM OF NUMERATION

CHAPTER 2 EQUATIONS AND INEQUALITIES

5 COMPLEX NUMBERS AND QUADRATIC EQUATIONS

5.1 REAL NUMBERS
5.2 COMPLEX NUMBER SYSTEM
5.3 REAL AND COMPLEX ROOTS OF QUADRATIC EQUATIONS
5.4 DISCRIMINANT OF A QUADRATIC EQUATION
5.5 RELATIONS BETWEEN ROOTS AND COEFFICIENTS OF A QUADRATIC EQUATION

6 QUADRATIC EQUATIONS AND QUADRATIC FUNCTIONS

6.1 RELATIONSHIP BETWEEN QUADRATIC FUNCTIONS AND QUDRATIC EQUATIONS
6.2 INTERSECTION OF THE GRAPH OF A QUADRATIC FUNCTION AND A LINE
6.3 MAXIMUM AND MINIMUM OF QUADRATIC FUNCTIONS
6.4 THEORY OF EQUATIONS

7 VARIOUS EQUATIONS

7.1 SOLVING POLYNOMIALS EQUATIONS OF HIGHER DEGREE
7.2 SYSTEMS OF EQUATIONS
7.3 FRACTIONAL EQUATIONS
7.4 IRRATIONAL EQUATIONS
8 VARIOUS INEQUALITIES
8.1 PROPERTIES OF INEQUALITIES
8.2 INEQUALITIES INVOLVING ABSOLUTE VALUES
8.3 QUADRATIC INEQUALITIES
8.4 HIGHER-DEGREE POLYNOMIAL INEQUALITIES
8.5 FRACTIONAL INEQUALITIES

CHAPTER 3 EQUATIONS FOR FIGURES

9 PLANE COORDINATES
9.1 THE DISTANCE BETWEEN ANY TWO POINTS
9.2 DIVISION OF A LINE SEGMENT

10 EQUATIONS OF A STRAIGHT LINE
10.1 FINDING EQUATIONS OF A LINE
10.2 PARALLEL AND PERPENDICULAR LINES
10.3 THE DISTANCE FROM A POINT TO A LINE

11 EQUATIONS OF A CIRCLE
11.1 FINDING THE EQUATIONS OF A CIRCLE
11.2 POSITIONAL RELATIONSHIPS OF A CIRCLE AND A LINE

12 TRANSFORMATIONS OF GEOMETRIC FIGURES
12.1 TRANSLATIONS
12.2 REFLECTIONS
12.3 APPLICATION PROBLEMS

13 SOLUTION REGION OF INEQUALITIES
13.1 SOLUTION REGION OF INEQUALITIES
13.2 APPLICATION OF SYSTEMS OF INEQUALITIES

14 APPENDIX
: RECAP OF SOME GEOMETRY BASICS

<¿À¸¥ÂÊÆäÀÌÁö ÇѱۼöÇÐ ¸ñÂ÷>
¼öÇÐ I

Á¦ 1 Àå ´Ù Ç× ½Ä

1 ´ÙÇ׽İú ±× ¿¬»ê

1.1 ´ÙÇ×½ÄÀÇ µ¡¼À°ú »¬¼À
1.2 ´ÙÇ×½ÄÀÇ °ö¼À°ú ³ª´°¼À

2 ³ª¸ÓÁö Á¤¸®

2.1 Ç×µî½Ä°ú ¹ÌÁ¤°è¼ö¹ý
2.2 ³ª¸ÓÁö Á¤¸®

3 ÀμöºÐÇØ

3.1 ±âº»°³³ä
3.2 ÀμöºÐÇØ °ø½Ä
3.3 ´ÙÇ×½ÄÀÇ ÀμöºÐÇØ

4 ¾à¼ö¿Í ¹è¼ö/ ±â¼ö¹ý

4.1 ´ÙÇ×½ÄÀÇ ¾à¼ö¿Í ¹è¼ö
4.2 ±â¼ö¹ý

Á¦ 2 Àå ¹æÁ¤½Ä°ú ºÎµî½Ä

5 º¹¼Ò¼ö¿Í ÀÌÂ÷¹æÁ¤½Ä

5.1 ½Ç ¼ö
5.2 º¹¼Ò¼ö ü°è
5.3 ÀÌÂ÷¹æÁ¤½ÄÀÇ ½Ç±Ù°ú Çã±Ù

5.4 ÀÌÂ÷¹æÁ¤½ÄÀÇ ÆǺ°½Ä
5.5 ÀÌÂ÷¹æÁ¤½ÄÀÇ ±Ù°ú °è¼öÀÇ °ü°è

6 ÀÌÂ÷¹æÁ¤½Ä°ú ÀÌÂ÷ÇÔ¼ö

6.1 ÀÌÂ÷ÇÔ¼ö¿Í ÀÌÂ÷¹æÁ¤½ÄÀÇ °ü°è

6.2 ÀÌÂ÷ÇÔ¼öÀÇ ±×·¡ÇÁ¿Í Á÷¼±ÀÇ À§Ä¡°ü°è

6.3 ÀÌÂ÷ÇÔ¼öÀÇ ÃÖ´ë¿Í ÃÖ¼Ò

6.4 ¹æÁ¤½ÄÀÇ ÀÌ·Ð

7 ¿©·¯ °¡Áö ¹æÁ¤½Ä

7.1 °íÂ÷¹æÁ¤½ÄÀÇ Ç®ÀÌ

7.2 ¿¬¸³¹æÁ¤½Ä
7.3 ºÐ¼ö¹æÁ¤½Ä
7.4 ¹«¸®¹æÁ¤½Ä
8 ¿©·¯ °¡Áö ºÎµî½Ä
8.1 ºÎµî½ÄÀÇ ¼ºÁú
8.2 Àý´ñ°ªÀ» Æ÷ÇÔÇÑ ºÎµî½Ä
8.3 ÀÌÂ÷ºÎµî½Ä
8.4 °íÂ÷ºÎµî½Ä
8.5 ºÐ¼öºÎµî½Ä

Á¦ 3 Àå Æò¸éÁÂÇ¥

9 Æò¸éÁÂÇ¥
9.1 µÎ Á¡ »çÀÌÀÇ °Å¸®
9.2 ¼±ºÐÀÇ ºÐÇÒ

10 Á÷¼±ÀÇ ¹æÁ¤½Ä
10.1 Á÷¼±ÀÇ ¹æÁ¤½Ä ±¸Çϱâ
10.2 µÎ Á÷¼±ÀÇ ÆòÇà°ú ¼öÁ÷
10.3 Á¡°ú Á÷¼± »çÀÌÀÇ °Å¸®

11 ¿øÀÇ ¹æÁ¤½Ä
11.1 ¿øÀÇ ¹æÁ¤½Ä ±¸Çϱâ
11.2 ¿ø°ú Á÷¼±ÀÇ À§Ä¡°ü°è

12 µµÇüÀÇ À̵¿
12.1 ÆòÇàÀ̵¿
12.2 ´ëĪÀ̵¿
12.3 ÀÀ¿ë¹®Á¦

13 ºÎµî½ÄÀÇ ¿µ¿ª
13.1 ºÎµî½ÄÀÇ ¿µ¿ª
13.2 ºÎµî½ÄÀÇ ¿µ¿ªÀÇ È°¿ë

14 ºÎ·Ï: ±âÇÏÇÐ ±âÃÊ(°³¿ä)