ÄÜÅÙÃ÷ »ó¼¼º¸±â
2018-¼öÇÐ(ÇÏ)-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ


2018-¼öÇÐ(ÇÏ)-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

2018-¼öÇÐ(ÇÏ)-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

<Å©¸®½º> Àú | ÀλçÀ̵å·è

Ãâ°£ÀÏ
2018-03-20
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
3 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼­ ¹è¿ì´Â ¼öÇÐÀº ¼­¾ç¿¡¼­ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼­ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù.
ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼­´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼­¿¡¼­ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¼öÇè»ýµéÀÌ ¼­¾ç¿¡¼­ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù. ¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼­¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ½ÃÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ÆíÁýÇÏ¿´´Ù. ¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ¼öÇÐÀº ³í¸®ÀûÀÎ »ç°í°¡ °­Á¶µÇ´Â °ú¸ñÀÌÁö¸¸ ±âº»ÀûÀÎ »çÇ×µéÀ» ¾Ï±âÇÏ°í ÀÖÁö ¾ÊÀ¸¸é ½ÇÁ¦ ¹®Á¦¸¦ Ǫ´Âµ¥ ¾î·Á¿òÀ» °Þ°Ô µÈ´Ù. ±×·¸Áö¸¸ ÇÑÆíÀ¸·Î´Â, ³í¸®ÀûÀÎ »ç°í¿Í ÇÔ²² ¾Ï±âÀÇ ³ë·ÂÀÌ º´ÇàµÇ¾ú´Ù°í Çصµ ¹®Á¦¿Í ±× ÇØ´äÀÌ ÀǹÌÇÏ´Â ¹Ù¸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇÒ ¼ö ¾øÀ¸¸é ¹®Á¦ÀÇ ÇØ´äÀ» ±¸Çß´Ù°í Çصµ ±× ±â¹ÝÀÌ Ãë¾àÇÏ¿© º¯Çü¹®Á¦¿¡ ´çȲÇÏ°Ô µÈ´Ù.
ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼­ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼­ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
ÀÌ Ã¥Àº ±³°ú¼­ ¶Ç´Â Çй®ÀûÀ¸·Î ¾ö°ÝÇÑ ³í¹®ÀÌ ¾Æ´Ï´Ù. ¿ì¸®³ª¶ó °íµîÇб³ ¼öÇÐÀ» °øºÎÇÏ°í ½ÃÇèÀ» Ä¡¸£´Âµ¥ µµ¿òÀ» ÁÖ±â À§ÇÑ ½ÃÇèÁغñ¼­ÀÌ´Ù. ¼­±¸ ¼öÇп¡ ´ëÇÑ Á÷Á¢ÀûÀΠüÇèÀº ¼öÇÐÀÇ °³³äÀ» ÀÍÈ÷°í ¹®Á¦Ç®ÀÌ µî ½ÃÇèÁغñ¸¦ ÇÏ´Â °úÁ¤¿¡¼­ ¾î·Á¿ï ¼ö ÀÖ´Â ¼öÇа³³äÀ» ½±°Ô ´À²¸Áö°Ô ÇÏ°í ÀÌÇØÇϴµ¥ µµ¿òÀÌ µÉ °ÍÀÓÀ» È®½ÅÇÑ´Ù. ¾Æ¿ï·¯ ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ´Â Çлýµé¿¡°Ôµµ ¸¹Àº µµ¿òÀÌ µÉ °ÍÀ¸·Î ±â´ëÇÑ´Ù.

¸ñÂ÷

(ÇϱÇ)


9 ¿øÀÇ ¹æÁ¤½Ä
9.1 ¿øÀÇ ¹æÁ¤½Ä ±¸Çϱâ
9.2 ¿ø°ú Á÷¼±ÀÇ À§Ä¡°ü°è

10 µµÇüÀÇ À̵¿
10.1 ÆòÇàÀ̵¿
10.2 ´ëĪÀ̵¿
10.3 ÀÀ¿ë¹®Á¦
10.4 ºÎ·Ï : ±âÇÏÇÐ ±âÃÊ(°³¿ä)


Á¦ 3 Àå ¼ö¿Í ¿¬»ê

11 ÁýÇÕ
11.1 ÁýÇÕÀÇ °³³ä
11.2 ÁýÇÕÀÇ ¿¬»ê

12 ¸íÁ¦
12.1 ¸íÁ¦¿Í Á¶°Ç
12.2 ¸íÁ¦ÀÇ ¿ª, ÀÌ, ´ë¿ì
12.3 ÇÊ¿äÁ¶°Ç°ú ÃæºÐÁ¶°Ç
12.4 Àý´ëºÎµî½Ä
12.5 ¸íÁ¦¸¦ Áõ¸í, ¹ÝÁõÇÏ´Â ¹æ¹ý

Á¦ 4 Àå ÇÔ ¼ö

13 ÇÔ¼ö

13.1 ÇÔ¼öÀÇ ¶æ°ú ±×·¡ÇÁ
13.2 ÇÔ¼öÀÇ ¸î °¡Áö ÇüÅÂ
13.3 ÇÔ¼öÀÇ ÇÕ¼º
13.4 ¿ªÇÔ¼ö

14 À¯¸®ÇÔ¼ö¿Í ¹«¸®ÇÔ¼ö

14.1 À¯¸®½Ä
14.2 ¹«¸®½Ä
14.3 À¯¸®ÇÔ¼ö¿Í ¹«¸®ÇÔ¼öÀÇ °³³ä
14.4 y=(ax b)/(cx d) ²ÃÀÇ ÇÔ¼ö
14.5 y=sqrt(ax b) c ²ÃÀÇ ÇÔ¼ö
14.6 ºÐ¼ö¹æÁ¤½Ä*
14.7 ¹«¸®¹æÁ¤½Ä*
14.8 ºÐ¼öºÎµî½Ä°ú ¹«¸®ºÎµî½Ä *
* 2015 °³Á¤ ±³À°°úÁ¤ <½ÉÈ­ ¼öÇÐ I>¿¡ ¼ÓÇÏ´Â ´Ü¿øÀÓ


Á¦ 5 Àå È®·ü°ú Åë°è

15 °æ¿ìÀÇ ¼ö

15.1 ÇÕÀÇ ¹ýÄ¢°ú °öÀÇ ¹ýÄ¢

16 ¼ø¿­°ú Á¶ÇÕ

16.1 ¼ø¿­
16.2 Á¶ÇÕ

(VOLUME 2)


9 EQUATIONS OF A CIRCLE

9.1 FINDING THE EQUATIONS OF A CIRCLE
9.2 POSITIONAL RELATIONSHIPS OF A CIRCLE AND A LINE

10 TRANSFORMATIONS OF GEOMETRIC FIGURES

10.1 TRANSLATIONS
10.2 REFLECTIONS
10.3 APPLICATION PROBLEMS
10.4 APPENDIX : RECAP OF SOME GEOMETRY BASICS

CHAPTER 3 NUMBERS AND OPERATIONSS

11 SETS

11.1 CONCEPTS OF SETS
11.2 OPERATIONS OF SETS

12 PROPOSITIONS

12.1 PROPOSITIONS AND PREDICATES
12.2 CONVERSE, INVERSE AND CONTRAPOSITIVE OF PROPOSITIONS
12.3 NECESSARY AND SUFFICIENT CONDITIONS
12.4 ABSOLUTE INEQUALITIES
12.5 TECHNIQUES FOR PROVING AND DISPROVING PROPOSITIONS

CHAPTER 4 FUNCTIONS

13 FUNCTIONS

13.1 CONCEPT OF A FUNCTION AND ITS GRAPH
13.2 SOME TYPES OF FUNCTIONS
13.3 COMPOSITION OF FUNCTIONS
13.4 INVERSE FUNCTIONS

14 RATIONAL AND IRRATIONAL FUNCTIONS

14.1 RATIONAL EXPRESSIONS
14.2 IRRATIONAL EXPRESSIONS
14.3 CONCEPTS OF RATIONAL AND IRRATIONAL FUNCTIONS
14.4 FUNCTIONS OF THE FORM y=(ax b)/(cx d)
14.5 FUNCTIONS OF THE FORM y=sqrt(ax b) c
14.6 FRACTIONAL EQUATIONS
14.7 IRRATIONAL EQUATIONS
14.8 FRACTIONAL AND IRRATIONAL INEQUALITIES


CHAPTER 5 PROBABILITY AND STATISTICS

15 BASIC COUNTING PRINCIPLES

15.1 SUM AND PRODUCT RULES

16 PERMUTATIONS AND COMBINATIONS

16.1 PERMUTATIONS
16.2 COMBINATIONS