ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼ ¹è¿ì´Â ¼öÇÐÀº ¼¾ç¿¡¼ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼¿¡¼ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼¾ç¿¡¼ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2015°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.
¼ö ÇÐ II
¸ñ Â÷
Á¦ 1 Àå ÇÔ¼öÀÇ ±ØÇÑ°ú ¿¬¼Ó
1 ÇÔ¼öÀÇ ±ØÇÑ
1.1 ±ØÇÑÀÇ °³³ä
1.2 ±ØÇÑÀÇ ¼ºÁú
1.3 ±ØÇÑÀÇ ¾ö¹ÐÇÑ (¶Ç´Â Çü½ÄÀûÀÎ) Á¤ÀÇ*
* 2015 °³Á¤ ±³À°°úÁ¤ ¿Ü.
2 ÇÔ¼öÀÇ ¿¬¼Ó
2.1 ¿¬¼Ó¼º
2.2 ¿¬¼ÓÇÔ¼öÀÇ ¼ºÁú
Á¦ 2 Àå ¹Ì ºÐ
3 ¹ÌºÐ°è¼ö
3.1 ¹ÌºÐ°è¼öÀÇ °³³ä
3.2 ¹ÌºÐ°è¼öÀÇ ±âÇÏÇÐÀû Çؼ®
4 µµÇÔ¼ö
4.1 y=x^n (´Ü, n Àº ¾çÀÇ Á¤¼ö)ÀÇ µµÇÔ¼ö
4.2 ÇÕ-Â÷ÀÇ ¹ÌºÐ¹ý°ú °öÀÇ ¹ÌºÐ¹ý
4.3 ¹ÌºÐ°¡´É¼º°ú ¿¬¼Ó¼º
5 µµÇÔ¼öÀÇ È°¿ë
5.1 Á¢¼±ÀÇ ¹æÁ¤½Ä
5.2 Æò±Õ°ª Á¤¸®
5.3 ÇÔ¼öÀÇ Áõ°¡¿Í °¨¼Ò
5.4 ÇÔ¼öÀÇ ±Ø´ë¿Í ±Ø¼Ò
5.5 ±×·¡ÇÁÀÇ °³Çü
5.6 ¹æÁ¤½Ä, ºÎµî½Ä°ú ¹ÌºÐ
5.7 ¼Óµµ¿Í °¡¼Óµµ
Á¦ 3 Àå ÀûºÐ
6 ºÎÁ¤ÀûºÐ
6.1 ºÎÁ¤ÀûºÐÀÇ °³³ä
6.2 ºÎÁ¤ÀûºÐÀÇ ¿¬»ê¹ýÄ¢
7 Á¤ÀûºÐ
7.1 Á¤ÀûºÐÀÇ Á¤ÀÇ
7.2 Á¤ÀûºÐÀÇ °è»ê
8 Á¤ÀûºÐÀÇ È°¿ë
8.1 ³ÐÀÌ
8.2 ¼Óµµ¿Í °Å¸®
MATH II
Contents
CHAPTER 1 LIMITS AND CONTINUITY OF A FUNCTION
1 LIMITS OF A FUNCTION
1.1 CONCEPT OF LIMITS
1.2 PROPERTIES OF LIMITS
1.3 THE PRECISE (OR FORMAL) DEFINITION
2 CONTINUITY OF A FUCTION
2.1 CONTINUITY
2.2 PROPERTIES OF CONTINUOUS FUNCTIONS
CHAPTER 2 DIFFERENTIATION
3 DIFFERNTIAL COEFFICIENTS (OR DERIVATIVES)
3.1 CONCEPT OF THE DIFFERENTIAL COEFFICIENT (OR THE DERIVATIVE)
3.2 GEOMETRIC INTERPRETATION OF DIFFERENTIAL COEFFICIENTS
4 DERIVATIVE FUNCTIONS
4.1 DERIVATIVE OF y=x^n (WHERE n IS POSITIVE INTEGERS)
4.2 SUM-DIFFERENCE RULE AND PRODUCT RULE
4.3 DIFFERENTIABILITY AND CONTINUITY
5 APPLICATIONS OF DERIVATIVES
5.1 EQUATION OF THE TANGENT LINE
5.2 MEAN VALUE THEOREM
5.3 INCREASE AND DECREASE OF A FUNCTION
5.4 LOCAL MAXIMUM AND MINIMUM OF A FUNCTION
5.5 CURVE SKETCHING
5.6 EQUATIONS, INEQUALITIES, AND DIFFERENTIATION
5.7 VELOCITY AND ACCELERATION
CHAPTER 3 INTEGRATION
6 INDEFINITE INTEGRAL
6.1 CONCEPTS OF INDEFINITE INTEGRAL
6.2 RULES OF OPERATION ON THE INDEFINITE INTEGRAL
7 DEFINITE INTEGRAL
7.1 DEFINITION OF THE DEFINITE INTEGRAL
7.2 COMPUTING DEFINITE INTEGRALS
8 APPLICATIONS OF DEFINITE INTEGRALS
8.1 AREAS
8.2 VELOCITIES AND DISTANCES