ÄÜÅÙÃ÷ »ó¼¼º¸±â
2018-¼öÇÐ1-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ


2018-¼öÇÐ1-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

2018-¼öÇÐ1-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

<Å©¸®½º> Àú | ÀλçÀ̵å·è

Ãâ°£ÀÏ
2018-04-01
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
3 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼­ ¹è¿ì´Â ¼öÇÐÀº ¼­¾ç¿¡¼­ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼­ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼­´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼­¿¡¼­ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼­¾ç¿¡¼­ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼­¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2015°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼­ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼­ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.

¸ñÂ÷

¼ö ÇÐ I
¸ñ Â÷

Á¦ 1 Àå Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼ö

1 Áö¼ö¿Í ·Î±×
1.1 °ÅµìÁ¦°ö±Ù°ú °ÅµìÁ¦°ö±Ù ±ÙÈ£
1.2 ½Ç¼ö Áö¼ö·ÎÀÇ È®Àå
1.3 Áö¼öÀÇ °è»ê¹ýÄ¢
1.4 ·Î±×ÀÇ Á¤ÀÇ¿Í ¼ºÁú
1.5 »ó¿ë·Î±×

2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼ö
2.1 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ Á¤ÀÇ
2.2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ±×·¡ÇÁ
2.3 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ È°¿ë


Á¦ 2 Àå »ï°¢ÇÔ¼ö

3 »ï°¢ÇÔ¼ö
3.1 ÀϹݰ¢°ú È£µµ¹ý
3.2 »ï°¢ÇÔ¼öÀÇ °³³ä
3.3 »ï°¢ÇÔ¼öÀÇ ±×·¡ÇÁ
3.4 »ï°¢ÇÔ¼öÀÇ ¼ºÁú
3.5 »çÀιýÄ¢°ú ÄÚ»çÀιýÄ¢
3.6 »ï°¢ÇÔ¼öÀÇ È°¿ë

Á¦ 3 Àå ¼ö ¿­

4 µîÂ÷¼ö¿­°ú µîºñ¼ö¿­

4.1 ¼ö¿­ÀÇ ¶æ
4.2 µîÂ÷¼ö¿­
4.3 µîºñ¼ö¿­

5 ¼ö¿­ÀÇ ÇÕ

5.1 ÇÕÀ» ³ªÅ¸³»´Â ±âÈ£ ¥Ò
5.2 ¿©·¯ °¡Áö ¼ö¿­ÀÇ ÇÕ

6 ¼öÇÐÀû ±Í³³¹ý

6.1 ¼ö¿­ÀÇ ±Í³³Àû Á¤ÀÇ
6.2 ¼öÇÐÀû ±Í³³¹ýÀÇ ¿ø¸®

MATH I
Contents

CHAPTER 1 EXPONENTIAL AND LOGARITHMIC FUNCTIONS

1 EXPONENTS AND LOGARITHMS
1.1 ROOTS AND RADICALS
1.2 REAL EXPONENTS
1.3 LAWS OF EXPONENTS
1.4 DEFINITION AND PROPERTIES OF LOGARITHM
1.5 COMMON LOGARITHMS

2 EXPONENTIAL AND LOGARITHMIC FUNCTIONS
2.1 DEFINITIONS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
2.2 GRAPHING EXPONENTIAL AND LOGARITHMIC FUNCTIONS
2.3 APPLICATIONS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS


CHAPTER 2 TRIGONOMETRIC FUNCTIONS

3 TRIGONOMETRIC FUNCTIONS
3.1 GENERAL ANGLES AND RADIAN MEASURE
3.2 CONCEPTS OF TRIGONOMETRIC FUNCTIONS
3.3 GRAPHS OF TRIGONOMETRIC FUNCTIONS
3.4 PROPERTIES OF TRIGONOMETRIC FUNCTIONS
3.5 TRIGONOMETRIC FUNCTIONS: THE LAW OF SINES AND COSINES
3.6 APPLICATIONS OF TRIGONOMETRIC FUNCTIONS

CHAPTER 3 SEQUENCES

4 ARITHMETIC AND GEOMETRIC PROGRESSIONS

4.1 SEQUENCES AND SERIES
4.2 ARITHMETIC PROGRESSIONS (A.P.)
4.3 GEOMETRIC PROGRESSIONS (G.P.)

5 SUMS OF SEQUENCES

5.1 SUMMATION NOTATION ¥Ò
5.2 SUMS OF VARIOUS SEQUENCES

6 MATHEMATICAL INDUCTION

6.1 RECURSIVE DEFINITION OF SEQUENCES
6.2 THE PRINCIPLE OF MATHEMATICAL INDUCTION (M.I.)