ÄÜÅÙÃ÷ »ó¼¼º¸±â
2018-¹ÌÀûºÐ-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ


2018-¹ÌÀûºÐ-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

2018-¹ÌÀûºÐ-¿µ¾îÇѱۼöÇÐ-¿À!¼öÇÐ

<Å©¸®½º> Àú | ÀλçÀ̵å·è

Ãâ°£ÀÏ
2018-05-07
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
4 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ÀÌ Ã¥Àº ´ëÇÐÀԽà ¼öÇè»ý ¶Ç´Â ÇØ¿ÜÀ¯ÇÐÀ» ÁغñÇÏ°í ÀÖ´Â °íµîÇлýÀ» ´ë»óÀ¸·Î ÇÑ´Ù.
¿À´Ã³¯ ¿ì¸®°¡ °íµîÇб³¿¡¼­ ¹è¿ì´Â ¼öÇÐÀº ¼­¾ç¿¡¼­ ¹ßÀüµÇ¾î ¿Â ¼öÇÐÀ» ¿ì¸®°¡ Á÷Á¢ ¹è¿ì¸é¼­ ¿ì¸®¸»·Î ¹ø¿ªÇÑ °ÍÀÌ ¾Æ´Ï°í ÁÖ·Î Áß±¹ ¶Ç´Â ÀϺ» ÇÐÀÚµéÀÌ ±×µéÀÇ ¾ð¾î·Î ¹ø¿ªÇØ ³õÀº °ÍÀ» ´Ù½Ã ¿ì¸®¸»·Î ¹ø¿ªÇÏ¿© ¹è¿ì°í ÀÖ´Â °ÍÀÌ´Ù. ÀÌ¿¡ µû¶ó ¼öÇпë¾î ÀÚü°¡ ¿ì¸®³ª¶óÀÇ ÀÏ»ó»ýÈ°¿¡¼­´Â »ç¿ëÇÏÁö ¾Ê´Â Áß±¹ ¶Ç´Â ÀϺ»ÀÇ ÇÑÀÚ°¡ ´ëºÎºÐÀ» Â÷Áö ÇÏ°í ÀÖ¾î ±× Àǹ̸¦ ÀÌÇØÇϱ⠾î·Æ°í ¿ë¾î ÀÚüÀÇ Àǹ̸¦ ´Ù½Ã ¾Ï±âÇØ¾ß ÇÏ´Â ¾î·Á¿òÀÌ ÀÖ°Ô µÈ´Ù. ÀÌ·Î ÀÎÇØ ¼öÇÐÀÇ °³³ä Á¤¸³°ú ÀÌ·Ð Àü°³°úÁ¤µµ ¿µ¹® ¿ø¼­¿¡¼­ ÀǵµÇÏ°í ÀÖ´Â °Í°ú´Â ´Þ¸® ¿Ö°îµÇ´Â °æ¿ìµµ Á¾Á¾ ¹ß»ýÇÏ°Ô µÈ °ÍÀ¸·Î º¸ÀδÙ.
ÀÌ Ã¥Àº ¿µ¾î¼öÇаú ÇѱۼöÇÐÀ» ½±°Ô ºñ±³ÇÒ ¼ö ÀÖµµ·Ï ¿ÞÂÊ ÆäÀÌÁö¿¡´Â ¿µ¾î¼öÇÐ, ¿À¸¥ÂÊ ÆäÀÌÁö¿¡´Â ÇѱۼöÇÐÀ¸·Î ±¸¼ºÇÏ¿© ¼­¾ç¿¡¼­ ¹ßÀüÇØ ¿Â ¼öÇÐÀ» Á÷Á¢ Á¢ÇÏ´Â ±âȸ¸¦ Á¦°øÇÑ´Ù.
¼öÇè»ýµéÀÌ º¸´Ù ½±°í Á÷Á¢ÀûÀ¸·Î ¼öÇа³³äÀ» ´À³¢°í ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ¼­¾çÀÇ ¿ø °³³ä°ú ÀÌ·ÐÀü°³°úÁ¤À» ±âº»À¸·Î ÇϵÇ, ¼öÇèÁغñ¿¡ Â÷ÁúÀÌ ¾øµµ·Ï ¿øÄ¢ÀûÀ¸·Î ¿ì¸®³ª¶ó °íµîÇб³ ±³À°°úÁ¤(2015°³Á¤)¿¡ Ãæ½ÇÇÏ°Ô ³»¿ëÀ» ±¸¼ºÇÏ¿´´Ù.
¿µ¾î°¡ Ãë¾àÇÑ ¼öÇè»ýÀº ÇÑ±Û ºÎºÐ¸¸ °øºÎÇÏ¿©µµ ÃæºÐÇÏ´Ù. ÇѱۺκРÁß½ÉÀ¸·Î °øºÎÇÏ°í °³³äÀÌ ¸ðÈ£ÇÑ ºÎºÐ¸¸ ¿µ¹®À» ÂüÁ¶ÇÏ´Â ¹æ¹ýµµ ÁÁ°í, ¹Ý´ë·Î ¿µ¹® Áß½ÉÀ¸·Î °øºÎÇÏ°í ¿ì¸®¸» ¿ë¾î¸¦ È®ÀÎÇØ º¸´Â ½ÄÀ¸·Î °øºÎÇصµ ÁÁ´Ù.
ÀÌ»ó°ú °°Àº ¼öÇа³³ä°ú ÀÌ·Ð Àü°³ÀÇ ±âº»¿¡ °üÇÑ »çÇ× ÀÌ¿Ü¿¡µµ ÀÌ Ã¥Àº ½ÃÇè¹®Á¦¸¦ Àß Ç® ¼ö ÀÖµµ·Ï °¢º°ÇÑ ¹è·Á¸¦ ÇÏ¿´´Ù. ÀÌ¿Í ÇÔ²² ÀÌ Ã¥Àº ¼öÇй®Á¦ Ç®À̸¦ À§ÇÑ Âü°í¼­ÀÌÁö¸¸, ¹®Á¦¿Í ÇØ´äÀÌ °®°í ÀÖ´Â Á÷°üÀû Àǹ̸¦ »ó»óÇÒ ¼ö ÀÖµµ·Ï ÃÖ´ëÇÑ ³ë·ÂÇÏ¿´´Ù. ½ÃÇè¿¡¼­ È¿À²ÀûÀ¸·Î ¹®Á¦¸¦ Ç® ¼ö ÀÖµµ·Ï ±âº»ÀûÀÎ ¾Ï±â¿Í ³í¸®ÀÇ È帧¿¡ µû¸¥ ±â°èÀûÀÎ ¹®Á¦Ç®À̸¦ ¹ÙÅÁÀ¸·Î ÇÏ¿´Áö¸¸, ±× Àǹ̰¡ Ãß»óÀûÀÌ°í »ó»óÇϱâ Èûµç ¹®Á¦µéÀº ±× ¶§ ±× ¶§ ±×·¡ÇÁ µîÀ» ÀÌ¿ëÇÏ¿© ±× Àǹ̸¦ Á÷°üÀûÀ¸·Î ÀÌÇØÇϴµ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖµµ·Ï Çؼ³À» µ¡ºÙÀ̾ú´Ù.

¸ñÂ÷

¹Ì Àû ºÐ
¸ñ Â÷


Á¦ 1 Àå ¼ö¿­ÀÇ ±ØÇÑ

1 ¼ö¿­ÀÇ ±ØÇÑ
1.1 ¼ö¿­ÀÇ ¼ö·Å°ú ¹ß»ê
1.2 ¼ö¿­ÀÇ ±ØÇÑ°ªÀÇ ¼ºÁú
1.3 µîºñ¼ö¿­ÀÇ ±ØÇÑ

2 ±Þ¼ö
2.1 ±Þ¼öÀÇ ¼ö·Å°ú ¹ß»ê
2.2 µîºñ±Þ¼ö
2.3 µîºñ±Þ¼öÀÇ È°¿ë


Á¦ 2 Àå ¹Ì ºÐ ¹ý

3 ¿©·¯ °¡Áö ÇÔ¼öÀÇ ¹ÌºÐ
3.1 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ±ØÇÑ
3.2 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ¹ÌºÐ
3.3 »ï°¢ÇÔ¼öÀÇ µ¡¼ÀÁ¤¸®
3.4 ¹è°¢ÀÇ °ø½Ä°ú ¹Ý°¢ÀÇ °ø½Ä*
3.5 »ï°¢¹æÁ¤½ÄÀÇ ÀϹÝÇØ*
3.6 »ï°¢ÇÔ¼öÀÇ ±ØÇÑ
3.7 »çÀÎÇÔ¼ö¿Í ÄÚ»çÀÎÇÔ¼öÀÇ ¹ÌºÐ

* 2015 °³Á¤ ±³À°°úÁ¤ <½ÉÈ­ ¼öÇÐ I>¿¡ Æ÷ÇÔµÈ ´Ü¿øÀÓ

4 ¿©·¯ °¡Áö ¹ÌºÐ¹ý
4.1 ¸òÀÇ ¹ÌºÐ¹ý
4.2 ÇÕ¼ºÇÔ¼öÀÇ ¹ÌºÐ¹ý (¿¬¼â¹ýÄ¢)
4.3 ¸Å°³º¯¼ö·Î ³ªÅ¸³½ ÇÔ¼öÀÇ ¹ÌºÐ¹ý
4.4 À½ÇÔ¼ö¿Í ¿ªÇÔ¼öÀÇ ¹ÌºÐ¹ý
4.5 ¿ª»ï°¢ÇÔ¼öÀÇ ¹ÌºÐ*
4.6 ÀÌ°èµµÇÔ¼ö¿Í °í°èµµÇÔ¼ö

* 2015 °³Á¤ ±³À°°úÁ¤ <½ÉÈ­ ¼öÇÐ I>¿¡ Æ÷ÇÔµÈ ´Ü¿øÀÓ


5 µµÇÔ¼öÀÇ È°¿ë
5.1 Á¢¼±ÀÇ ¹æÁ¤½Ä
5.2 ±×·¡ÇÁÀÇ °³Çü
5.3 ¹æÁ¤½Ä, ºÎµî½Ä°ú ¹ÌºÐ
5.4 ¿¬°üµÈ ºñÀ²¹®Á¦
5.5 ¼Óµµ¿Í °¡¼Óµµ


Á¦ 3 Àå Àû ºÐ ¹ý

6 ¿©·¯ °¡Áö ÀûºÐ¹ý
6.1 y=x^n (n Àº ½Ç¼ö) ÀÇ ºÎÁ¤ÀûºÐ°ú Á¤ÀûºÐ
6.2 »ï°¢ÇÔ¼öÀÇ ºÎÁ¤ÀûºÐ°ú Á¤ÀûºÐ
6.3 Áö¼öÇÔ¼ö¿Í ·Î±×ÇÔ¼öÀÇ ºÎÁ¤ÀûºÐ
6.4 ġȯÀûºÐ¹ý
6.5 ºÎºÐÀûºÐ¹ý
6.6 Á¤ÀûºÐÀ¸·Î Á¤ÀÇµÈ ÇÔ¼öÀÇ ¹ÌºÐ

7 Á¤ÀûºÐÀÇ È°¿ë
7.1 ±¸ºÐ±¸Àû¹ý
7.2 ³ÐÀÌ
7.3 ºÎÇÇ
7.4 ¿¬°üµÈ ºñÀ²¹®Á¦
7.5 ¼Óµµ¿Í °Å¸®

CALCULUS
Contents


CHAPTER 1 LIMITS OF SEQUENCES

1 LIMITS OF SEQUENCES
1.1 CONVERGENCE AND DIVERGENCE OF SEQUENCES
1.2 PROPERTIES FOR INFINITE SEQUENCES
1.3 LIMITS OF GEOMETRIC SEQUENCES

2 SERIES
2.1 CONVERGENCE AND DIVERGENCE OF SERIES
2.2 GEOMETRIC SERIES
2.3 APPLICATIONS OF GEOMETRIC SERIES


CHAPTER 2 METHODS OF DIFFERENTIATION

3 DIFFERENTIATION OF DIFFERENT TYPES OF FUNCTIONS
3.1 LIMITS OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
3.2 DIFFERENTIATION OF EXPONENTIAL AND LOGARITHMIC FUNCTIONS
3.3 ADDITION THEOREMS FOR TRIGONOMETRIC FUNCTIONS
3.4 TRIGONOMETRIC FUNCTIONS: DOUBLE- ANGLE AND HALF-ANGLE FORMULAS
3.5 GENERAL SOLUTIONS OF SOME STANDARD TRIGONOMETRIC EQUATIONS
3.6 LIMITS OF TRIGONOMETRIC FUNCTIONS
3.7 DIFFERENTIATION OF THE SINE AND COSINE FUNCTIONS
4 DIFFERENT TYPES OF DIFFERENTIATION RULES
4.1 QUOTIENT RULE
4.2 COMPOSITION-FUNCTION RULE (CHAIN RULE)
4.3 PARAMETRIC DIFFERENTIATION
4.4 DIFFERENTIATION OF IMPLICIT FUNCTIONS AND INVERSE FUNCTIONS
4.5 DIFFERENTIATION OF INVERSE TRIGONOMETRIC FUNCTIONS
4.6 SECOND AND HIGHER DERIVATIVES

5 APPLICATIONS OF DERIVATIVES
5.1 EQUATION OF THE TANGENT LINE
5.2 CURVE SKETCHING
5.3 EQUATIONS, INEQUALITIES, AND DIFFERENTIATION
5.4 RELATED RATES PROBLEMS
5.5 VELOCITY AND ACCELERATION


CHAPTER 3 METHODS OF INTEGRATION

6 DIFFERENT TYPES OF INTEGRATION RULES
6.1 INDEFINITE AND DEFINITE INTEGRALS OF y=x^n (n is real)
6.2 INDEFINITE AND DEFINITE INTEGRALS OF TRIGONOMETRIC FUNCTIONS
6.3 INDEFINITE INTEGRALS OF EXPONENTIAL AND LOGORITHMIC FUNCTIONS
6.4 INTEGRATION BY SUBSTITUTION
6.5 INTEGRATION BY PARTS
6.6 DEFFERENTIATING FUNCTIONS DEFINED BY DEFINITE INTEGRALS

7 APPLICATIONS OF DEFINITE INTEGRALS
7.1 AREAS AND VOLUMES BY SLICES
7.2 AREAS
7.3 VOLUMES
7.4 RELATED RATES PROBLEMS
7.5 VELOCITY AND DISTANCE