ÄÜÅÙÃ÷ »ó¼¼º¸±â
ÅÙ¼­Ç÷ηΠ¹è¿ì´Â µö·¯´×


ÅÙ¼­Ç÷ηΠ¹è¿ì´Â µö·¯´×

ÅÙ¼­Ç÷ηΠ¹è¿ì´Â µö·¯´×

<¼Ö¶ó¸®½º> Àú | ¿µÁø´åÄÄ

Ãâ°£ÀÏ
2018-12-11
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
22 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

µö·¯´× ±âÃÊ À̷кÎÅÍ ANN, ¿ÀÅäÀÎÄÚ´õ, CNN, RNN, GAN, FCN, DQN, À̹ÌÁö ĸ¼Å´× ÃֽŠ¸ðµ¨ ±¸Çö±îÁö

¡ºÅÙ¼­Ç÷ηΠ¹è¿ì´Â µö·¯´×¡»¿¡¼­´Â µö·¯´× ±â¹ýÀÇ ÀÌ·ÐÀû ¹è°æÀÌ µÇ´Â ±âÃÊÀûÀÎ ¼öÇÐÀû À̷еéÀ» ÀÚ¼¼ÇÏ°Ô ¼Ò°³ÇÏ°í, µö·¯´× ±âÃÊ ¸ðµ¨µé(ANN, ¿ÀÅäÀÎÄÚ´õ, CNN, RNN)ÀÇ Á¤È®ÇÑ ÀÌÇظ¦ À§ÇØ ÅÙ¼­Ç÷Π¿¹Á¦ ÄÚµå¿Í ÇÔ²² ¼³¸íÇÑ´Ù. ¶ÇÇÑ, µö·¯´× ¸ðµ¨µéÀ» ´Ù¾çÇÑ ¹®Á¦¿¡ Àû¿ëÇÏ°í ½ÇÁ¦ ¹®Á¦¿¡ ÀÀ¿ëÇÏ´Â ¹æ¹ýÀ» ¼Ò°³ÇÑ´Ù.

Ã¥ÀÇ Ãʹݿ¡´Â ¼±Çü ´ë¼ö, È®·ü Åë°è, ÃÖÀûÈ­ À̷аú °°Àº ¼öÇÐÀû ÀÌ·ÐÀ» ¼³¸íÇÏ°í, µö·¯´× ¾Ë°í¸®ÁòÀÇ ±âº» ±¸Á¶ÀÎ ANN, ¿ÀÅäÀÎÄÚ´õ, CNN, RNNÀ» ´Ù·é´Ù. Á߹ݿ¡´Â ¾Õ¿¡¼­ ¹è¿î ANN, CNN, RNN ±¸Á¶¸¦ À̹ÌÁö ĸ¼Å´×, Semantic Image Segmentation ¹®Á¦¿¡ ¾î¶»°Ô ÀÀ¿ëÇÏ´ÂÁö¸¦ ¼³¸íÇÑ´Ù. Ã¥ÀÇ ÈĹݿ¡´Â ÃÖ±Ù¿¡ Àαâ ÀÖ´Â ÁÖÁ¦ÀÎ »ý¼º ¸ðµ¨°ú °­È­ ÇнÀÀÇ °³³äÀ» »ìÆ캸°í, ÆÄÀÎ Æ©´×°ú »çÀü ÇнÀµÈ ¸ðµ¨À» ÀÌ¿ëÇؼ­ ½ÇÁ¦ ¹®Á¦¸¦ ÇØ°áÇÏ´Â ¹æ¹ýÀ» ¹è¿î´Ù. 1±ÇÀÇ Ã¥À¸·Î µö·¯´× ±âÃÊ À̷кÎÅÍ ÅÙ¼­Ç÷Π¶óÀ̺귯¸®¸¦ ÀÌ¿ëÇÑ ½ÇÁ¦ ±¸Çö±îÁö ¸ðµÎ ÆľÇÇÒ ¼ö ÀÖ´Ù.

ÀúÀÚ¼Ò°³

¼­¿ï´ëÇб³ ÀΰøÁö´É ¹× ÄÄÇ»ÅÍ ºñÀü ¿¬±¸½Ç¿¡¼­ ¼®»çÇÐÀ§¸¦ ¹Þ¾Ò´Ù. ÅÙ¼­ÇÃ·Î¿Í ÀΰøÁö´É, ¸Ó½Å·¯´×, µö·¯´×À» °ü·Ã ³»¿ëÀ» Æ÷½ºÆÃÇÏ´Â ¡°¼Ö¶ó¸®½ºÀÇ ÀΰøÁö´É ¿¬±¸½Ç¡±(solarisailab.com)À̶ó´Â ºí·Î±×¸¦ ¿î¿µ ÁßÀÌ´Ù.

¸ñÂ÷

1. ÀΰøÁö´É, ¸Ó½Å·¯´×, µö·¯´× ¼Ò°³
1.1 µö·¯´× ¾Ë°í¸®ÁòÀÇ µîÀå¹è°æ
1.2 Áöµµ ÇнÀ
1.3 ºñÁöµµ ÇнÀ
1.4 °­È­ ÇнÀ
1.5 Á¤¸®

2. ÅÙ¼­Ç÷Π¼Ò°³
2.1 ÅÙ¼­Ç÷Π¼³Ä¡ ¹× Ã¥¿¡¼­ »ç¿ëÇÏ´Â ¼Ò½º ÄÚµå ´Ù¿î·Îµå
2.1.1 ÅÙ¼­Ç÷Π¼Ò°³
2.1.2 ÅÙ¼­Ç÷Π¼³Ä¡
2.1.3 Ã¥¿¡¼­ »ç¿ëÇÏ´Â ¼Ò½º ÄÚµå ´Ù¿î·Îµå
2.2 µö·¯´×, ÅÙ¼­Ç÷ΠÀÀ¿ë ºÐ¾ß
2.2.1 ÄÄÇ»ÅÍ ºñÀü
2.2.2 ÀÚ¿¬¾î ó¸®
2.2.3 À½¼º ÀνÄ
2.2.4 °ÔÀÓ
2.2.5 »ý¼º ¸ðµ¨
2.3 ÅÙ¼­Ç÷ΠÃß»óÈ­ ¶óÀ̺귯¸®µé
2.3.1 Äɶó½º
2.3.2 TF-Slim
2.3.3 Sonnet
2.4 Á¤¸®

3. ÅÙ¼­Ç÷Π±âÃÊ¿Í ÅÙ¼­º¸µå
3.1 ÅÙ¼­Ç÷Π±âÃÊ - ±×·¡ÇÁ »ý¼º°ú ±×·¡ÇÁ ½ÇÇà
3.2 Ç÷¹À̽ºÈ¦´õ
3.3 ¼±Çüȸ±Í ¹× °æ»çÇÏ°­¹ý ¾Ë°í¸®Áò
3.3.1 ¸Ó½Å·¯´×ÀÇ ±âº» ÇÁ·Î¼¼½º - °¡¼³ Á¤ÀÇ, ¼Õ½Ç ÇÔ¼ö Á¤ÀÇ, ÃÖÀûÈ­ Á¤ÀÇ
3.3.2 ¼±Çü ȸ±Í ¾Ë°í¸®Áò ±¸Çö ¹× º¯¼ö
3.4 ÅÙ¼­º¸µå¸¦ ÀÌ¿ëÇÑ ±×·¡ÇÁ ½Ã°¢È­
3.5 Á¤¸®

4. ¸Ó½Å·¯´× ±âÃÊ À̷еé
4.1 Batch Gradient Descent, Mini-Batch Gradient Descent, Stochastic Gradient Descent
4.2 Training Data, Validation Data, Test Data ¹× ¿À¹öÇÇÆÃ
4.3 ¼ÒÇÁÆ®¸Æ½º ȸ±Í
4.3.1 ¼ÒÇÁÆ®¸Æ½º ȸ±Í
4.3.2 Å©·Î½º ¿£Æ®·ÎÇÇ ¼Õ½Ç ÇÔ¼ö
4.3.3 MNIST µ¥ÀÌÅͼÂ
4.3.4 One-hot Encoding
4.4 ¼ÒÇÁÆ®¸Æ½º ȸ±Í¸¦ ÀÌ¿ëÇÑ MNIST ¼ýÀÚ ºÐ·ù±â ±¸Çö
4.4.1 mnist_classification_using_softmax_regression.py
4.4.2 tf_nn_sparse_softmax_cross_entropy_with_logits_example.py
4.5 Á¤¸®

5. Àΰø½Å°æ¸Á(ANN)
5.1 Àΰø½Å°æ¸ÁÀÇ µîÀå ¹è°æ
5.2 ÆÛ¼ÁÆ®·Ð
5.3 ´ÙÃþÆÛ¼ÁÆ®·Ð MLP
5.4 ¿À·ù¿ªÀüÆÄ ¾Ë°í¸®Áò
5.5 ANNÀ» ÀÌ¿ëÇÑ MNIST ¼ýÀÚ ºÐ·ù±â ±¸Çö
5.6 Á¤¸®

6. ¿ÀÅäÀÎÄÚ´õ(AutoEncoder)
6.1 ¿ÀÅäÀÎÄÚ´õÀÇ °³³ä
6.2 ¿ÀÅäÀÎÄÚ´õ¸¦ ÀÌ¿ëÇÑ MNIST µ¥ÀÌÅÍ À籸Ãà
6.3 ¿ÀÅäÀÎÄÚ´õ¿Í ¼ÒÇÁÆ®¸Æ½º ºÐ·ù±â¸¦ ÀÌ¿ëÇÑ MNIST ºÐ·ù±â ±¸Çö
6.3.1 ÆÄÀÎ Æ©´×°ú ÀüÀÌ ÇнÀ
6.3.2 ¿ÀÅäÀÎÄÚ´õ¿Í ¼ÒÇÁÆ®¸Æ½º ºÐ·ù±â¸¦ ÀÌ¿ëÇÑ MNIST ¼ýÀÚ ºÐ·ù±â ±¸Çö
6.4 Á¤¸®

7. ÄÁº¼·ç¼Ç ½Å°æ¸Á(CNN)
7.1 ÄÁº¼·ç¼Ç ½Å°æ¸ÁÀÇ °³³ä - ÄÁº¼·ç¼Ç, Ç®¸µ
7.2 MNIST ¼ýÀÚ ºÐ·ù¸¦ À§ÇÑ CNN ºÐ·ù±â ±¸Çö
7.3 CNNÀ» ÀÌ¿ëÇÑ CIFAR-10 À̹ÌÁö ºÐ·ù±â ±¸Çö
7.3.1 CIFAR-10 µ¥ÀÌÅͼÂ
7.3.2 µå·Ó¾Æ¿ô
7.3.3 CNNÀ» ÀÌ¿ëÇÑ CIFAR-10 À̹ÌÁö ºÐ·ù±â ±¸Çö
7.4 ´ëÇ¥ÀûÀÎ CNN ¸ðµ¨µé - AlexNet, VGGNet, GoogLeNet, ResNet
7.4.1 AlexNet
7.4.2 VGGNet
7.4.3 GoogLeNet(Inception v1)
7.4.4 ResNet
7.5 tf.train.Saver API¸¦ ÀÌ¿ëÇؼ­ ¸ðµ¨°ú ÆĶó¹ÌÅ͸¦ ÀúÀåÇÏ°í ºÒ·¯¿À±â
7.6 Á¤¸®

8. ¼øȯ½Å°æ¸Á(RNN)
8.1 ¼øȯ½Å°æ¸Á
8.2 LSTM(Àå/´Ü±â ±â¾ï ³×Æ®¿öÅ©)¿Í °æ»çµµ »ç¶óÁü ¹®Á¦
8.3 GRU
8.4 ÀÓº£µù
8.4.1 ÀÓº£µùÀÇ°³³ä
8.4.2 tf.nn.embedding_lookupÀ» ÀÌ¿ëÇÑ ÀÓº£µù ±¸Çö
8.5 °æ»çµµ Áõ°¡ ¹®Á¦¿Í °æ»çµµ ÀÚ¸£±â
8.6 Char-RNN
8.6.1 Char-RNNÀÇ °³³ä
8.6.2 ÅÙ¼­Ç÷θ¦ ÀÌ¿ëÇÑ Char-RNN ±¸Çö
8.6.2.1 train_and_sampling.py
8.6.2.2 utils.py
8.7 Á¤¸®

9. À̹ÌÁö ĸ¼Å´×(Image Captioning)
9.1 À̹ÌÁö ĸ¼Å´× ¹®Á¦ ¼Ò°³
9.2 À̹ÌÁö ĸ¼Å´× µ¥ÀÌÅͼ - MS COCO
9.3 À̹ÌÁö ĸ¼Å´× ±¸Çö - im2txt
9.4 im2txt ÄÚµå ±¸Á¶¿¡ ´ëÇÑ ¼³¸í ¹× ÄÚµå ½ÇÇà ¹æ¹ý
9.4.1 train.py
9.4.2 show_and_tell_model.py
9.4.3 run_inference.py
9.5 Á¤¸®

10. Semantic Image Segmentation
10.1 Semantic Image Segmentation °³³ä
10.2 FCN
10.3 Semantic Image SegmentationÀ» À§ÇÑ µ¥ÀÌÅͼ - MIT Scene Parsing
10.4 FCNÀ» ÀÌ¿ëÇÑ Semantic Image Segmentation ±¸Çö - FCN.tensorflow
10.4.1 FCN.py
10.4.2 TensorflowUtils.py
10.4.3 read_MITSceneParsingData.py
10.4.4 BatchDatsetReader.py
10.5 Á¤¸®

11. »ý¼º ¸ðµ¨ - GAN
11.1 »ý¼º ¸ðµ¨ÀÇ °³³ä
11.2 GANÀÇ °³³ä
11.3 GANÀ» ÀÌ¿ëÇÑ MNIST µ¥ÀÌÅÍ »ý¼º
11.4 Á¤¸®

12. °­È­ ÇнÀ(Reinforcement Learning)
12.1 °­È­ ÇнÀÀÇ ±âº» °³³ä°ú MDP
12.1.1 »óÅÂ °¡Ä¡ ÇÔ¼ö
12.1.2 Çൿ °¡Ä¡ ÇÔ¼ö
12.2 Q-Learning
12.2.1 Q-Table°ú Q-Networks
12.2.2 ¡ô-Greedy
12.3 DQN
12.4 DQNÀ» ÀÌ¿ëÇÑ °ÔÀÓ ¿¡ÀÌÀüÆ® ±¸Çö - CatchGame
12.4.1 train_catch_game.py
12.4.2 play_catch_game.ipynb
12.5 Á¤¸®

13. ÆÄÀÎ Æ©´×°ú »çÀü ÇнÀµÈ ¸ðµ¨À» ÀÌ¿ëÇÑ ½ÇÁ¦ ¹®Á¦ ÇØ°á
13.1 ÆÄÀÎ Æ©´× ¹× ÀüÀÌ ÇнÀ ±â¹ý ¸®ºä
13.2 Inception v3 RetrainingÀ» ÀÌ¿ëÇÑ ³ª¸¸ÀÇ ºÐ·ù±â
13.2.1 Inception v3 ¸ðµ¨
13.2.2 inceptionv3_retrain.py - ³ª¸¸ÀÇ µ¥ÀÌÅͼÂÀ¸·Î ÆÄÀÎ Æ©´×
13.2.3 inceptionv3_retrain.py
13.2.4 inceptionv3_inference.py
13.3 »çÀü ÇнÀµÈ ¸ðµ¨À» ÀÌ¿ëÇÑ ¹°Ã¼ °ËÃâ ¼öÇà
13.3.1 ¹°Ã¼ °ËÃâÀÇ °³³ä
13.3.2 »çÀü ÇнÀµÈ Faster R-CNN ¸ðµ¨·Î ¹°Ã¼ °ËÃâ ¼öÇà
13.3.3 faster_rcnn_inference.py
13.4 TensorFlow Hub
13.5 Á¤¸®
13.6 ´õ °øºÎÇÒ °Íµé