ÄÜÅÙÃ÷ »ó¼¼º¸±â
Real-Time¼³°è¸¦ À§ÇÑ ¼±Çü µ¿ÀÛ Á¦¾î À¯Àü ¾Ë°í¸®Áò ¿¬±¸


Real-Time¼³°è¸¦ À§ÇÑ ¼±Çü µ¿ÀÛ Á¦¾î À¯Àü ¾Ë°í¸®Áò ¿¬±¸

Real-Time¼³°è¸¦ À§ÇÑ ¼±Çü µ¿ÀÛ Á¦¾î À¯Àü ¾Ë°í¸®Áò ¿¬±¸

,< Jia Yuan>,< Songtao Zhang>,< Peng Zhao> Àú | ¾ÆÁø

Ãâ°£ÀÏ
2020-07-10
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
13 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

This work presents optimal linear quadratic regulator (LQR) based on genetic
algorithm (GA) to solve the two degrees of freedom (2 DoF) motion control problem
in head seas for wave piercing catamarans (WPC). The proposed LQR based GA
control strategy is to select optimal weighting matrices (Q and R). The seakeeping
performance of WPC based on proposed algorithm is challenged because of
multi-input multi-output (MIMO) system of uncertain coefficient problems. Besides
the kinematical constraint problems of WPC, the external conditions must be
considered, like the sea disturbance and the actuators (a T-foil and two flaps)
control. Moreover, this paper describes the MATLAB and LabVIEW software plats
to simulate the reduction effects of WPC. Finally, the real-time (RT) NI
CompactRIO embedded controller is selected to test the effectiveness of the
actuators based on proposed techniques. In conclusion, simulation and experimental
results prove the correctness of the proposed algorithm. The percentage of heave
and pitch reductions are more than 18% in different high speeds and bad sea
conditions. And the results also verify the feasibility of NI CompactRIO embedded
controller.

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí

1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹ÀÌ¼Ç ÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀÇ Ç¥½Ã 9
º¹¼ö µ¥ÀÌÅÍÀÇ Ç¥½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹ÀÌ¼Ç 13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹ÀÌ¼Ç 24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37

Á¦ 2Æí : ¿¬±¸³í¹®
Design a software real-time operation platform for wave piercing
catamarans motion control using linear quadratic regulator based
genetic algorithm

1. Introduction 41
2. Mathematical model of WPC 43
3. Design of linear quadratic regulator based genetic algorithm 46
4. Experimental results and discussions 52
5. System development and simulation using MATLAB environment 52
6. Software implementation of NI CompactRIO embedded controller 57
7. Conclusions 61
8. References 62