嬬度苧 雌室左奄
馬戚崎軒球 Cabature Kalman 琶斗元税 搾識莫 乞莫 : 敢訓 蝕俳 蓄舛


馬戚崎軒球 Cabature Kalman 琶斗元税 搾識莫 乞莫 : 敢訓 蝕俳 蓄舛

馬戚崎軒球 Cabature Kalman 琶斗元税 搾識莫 乞莫 : 敢訓 蝕俳 蓄舛

,< Fadi N. Karameh> 煽 | 焼遭

窒娃析
2020-07-12
督析匂庫
ePub
遂勲
16 M
走据奄奄
PC什原闘肉殿鷺鹸PC
薄伐
重短 闇呪 : 0 闇
娃繰 重短 五室走
嬬度苧 社鯵
鯉託
廃匝辞汝

嬬度苧 社鯵

Kalman filtering methods have long been regarded as efficient adaptive Bayesian
techniques for estimating hidden states in models of linear dynamical systems
under Gaussian uncertainty. Recent advents of the Cubature Kalman filter (CKF)
have extended this efficient estimation property to nonlinear systems, and also to
hybrid nonlinear problems where by the processes are continuous and the
observations are discrete (continuous-discrete CDCKF). Employing CKF techniques,
therefore, carries high promise for modeling many biological phenomena where the
underlying processes exhibit inherently nonlinear, continuous, and noisy dynamics
and the associated measurements are uncertain and time-sampled. This paper
investigates the performance of cubature filtering (CKF and CD-CKF) in two
flagship problems arising in the field of neuroscience upon relating brain
functionality to aggregate neurophysiological recordings: (i) estimation of the firing
dynamics and the neural circuit model parameters from electric potentials (EP)
observations, and (ii) estimation of the hemodynamic model parameters and the
underlying neural drive from BOLD (fMRI) signals. First, in simulated neural
circuit models, estimation accuracy was investigated under varying levels of
observation noise (SNR), process noise structures, and observation sampling
intervals (dt). When compared to the CKF, the CD-CKF consistently exhibited
better accuracy for a given SNR, sharp accuracy increase with higher SNR, and
persistent error reduction with smaller dt. Remarkably, CD-CKF accuracy shows
only a mild deterioration for non-Gaussian process noise, specifically with Poisson
noise, a commonly assumed form of background fluctuations in neuronal systems.
Second, in simulated hemodynamic models, parametric estimates were consistently
improved under CD-CKF. Critically, time-localization of the underlying neural
drive, a determinant factor in fMRI-based functional connectivity studies, was
significantly more accurate under CD-CKF. In conclusion, and with the CKF
recently benchmarked against other advanced Bayesian techniques, the CD-CKF
framework could provide significant gains in robustness and accuracy when
estimating a variety of biological phenomena models where the underlying process
dynamics unfold at time scales faster than those seen in collected measurements.

鯉託

薦 1畷 : MATLAB 奄沙畷
1. MATLAB 奄沙紫遂畷 ,,,,,,,,,,,,,,,,,,,, 003
1.1 MATLAB 獣拙馬奄 ,,,,,,,,,,,,,,,,,,,,,,,,,, 003
誤敬但(command Window)拭辞税 脊径 005
亀崇源(Help)税 戚遂 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 007
1.2 脊径 神嫌税 呪舛 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 008
域至税 掻走 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 009
MATLAB 曽戟馬奄 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 009
1.3 尻至引 痕呪税 拝雁 ,,,,,,,,,,,,,,,,,,,,,,,,,, 009
尻至切 酔識授是 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 011
鎧舌敗呪 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 012
1.4 汽戚斗税 妊薄 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 013
1.5 痕呪税 坦軒 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 015
痕呪 戚硯 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 015
clear 誤敬嬢 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 016
働呪痕呪人 舛呪 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 017
whos 誤敬嬢 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 017
1.6 困斗人 楳慶 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 018
困斗 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 018
楳慶 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 023
什滴鍵 窒径引 常薦 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 024
1.7 沓棋(Random)呪人 差社呪 ,,,,,,,,,,,,,, 025
沓棋 呪 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 025
差社呪 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 027
1.8 奄硲研 戚遂廃 尻至 ,,,,,,,,,,,,,,,,,,,,,,,,,, 028
奄硲縦拭辞税 帖発 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 029
1.9 坪球 督析 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 030
什滴験闘 坪球 督析 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 030
坪伍闘税 蓄亜 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 032
敗呪 坪球 督析 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 033
紫遂切 舛税敗呪 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 036
1.10 娃舘廃 益掘覗税 持失 ,,,,,,,,,,,,,,,,,,,,, 037
ezplot聖 戚遂廃 益掘覗 ,,,,,,,,,,,,,,,,,,,,,,,,,, 037
plot聖 戚遂廃 益掘覗 ,,,,,,,,,,,,,,,,,,,,,,,,,, 039
3託据 益掘覗 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 042
1.11 MATLAB引 植漆(Excel)税 羨紗 043 植漆 汽戚斗 災君神奄 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 043
汽戚斗 亜閃神奄 辛芝 ,,,,,,,,,,,,,,,,,,,,,,,,, 046
什滴験闘 持失 辛芝 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 049
敗呪 持失 辛芝 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 049
持失吉 汽戚斗研 植漆督析稽 煽舌馬奄 ,, 050

薦 2畷 : 尻姥轄庚
Hybrid Cubature Kalman filtering for identifying nonlinear models
from sampled recording: Estimation of neuronal dynamics

1. Introduction 52
2. Neuronal model description 55
3. Other types of noise processes 61
4. Results 65
5. Hemodynamic model 78
6. Conclusion and discussion 84
7. Hemodynamic model estimation 88
8. Appendix 90
9. References 96