ÄÜÅÙÃ÷ »ó¼¼º¸±â
SimulinkÈ°¿ë ºÐ»ê ¿£Áø Á¦¾î ½Ã½ºÅÛÀÇ ¼³°è¿¬±¸(Design of Distributed Engine Control Systems with Uncertain Delay)


SimulinkÈ°¿ë ºÐ»ê ¿£Áø Á¦¾î ½Ã½ºÅÛÀÇ ¼³°è¿¬±¸(Design of Distributed Engine Control Systems with Uncertain Delay)

SimulinkÈ°¿ë ºÐ»ê ¿£Áø Á¦¾î ½Ã½ºÅÛÀÇ ¼³°è¿¬±¸(Design of Distributed Engine Control Systems with Uncertain Delay)

,< Yanxi Li>,< Xu Sun> Àú | ¾ÆÁø

Ãâ°£ÀÏ
2020-07-14
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
8 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

Future gas turbine engine control systems will be based on distributed architecture,
in which, the sensors and actuators will be connected to the controllers via a
communication network. The performance of the distributed engine control (DEC) is
dependent on the network performance. This study introduces a distributed control
system architecture based on a networked cascade control system (NCCS). Typical
turboshaft engine-distributed controllers are designed based on the NCCS
framework with a H¡Ä output feedback under network-induced time delays and
uncertain disturbances. The sufficient conditions for robust stability are derived via
the Lyapunov stability theory and linear matrix inequality approach. Both
numerical and hardware-in-loop simulations illustrate the effectiveness
of the presented method.

¸ñÂ÷

Á¦ 1Æí : SIMULINK ±âº»Æí
1.1 SIMULINKÀÇ ½ÃÀÛ 1
ºí·ÏÀÇ ¿¬°á 5
ºí·Ï ÆĶó¹ÌÅÍÀÇ ¼³Á¤ 7
½Ã¹Ä·¹ÀÌ¼Ç ÆĶó¹ÌÅÍ (Configuration Parameters)ÀÇ ¼³Á¤ 8
½Ã¹Ä·¹À̼ÇÀÇ ¼öÇà 9
ºí·Ï ÆĶó¹ÌÅÍÀÇ Ç¥½Ã 9
º¹¼ö µ¥ÀÌÅÍÀÇ Ç¥½Ã 11
2.2 µ¿Àû ½Ã¹Ä·¹ÀÌ¼Ç 13
ÀÌÂ÷ ¹ÌºÐ¹æÁ¤½Ä 17
¼±Çü »óź¯¼ö ¸ðµ¨ 23
DC ¸ðÅÍÀÇ ½Ã¹Ä·¹ÀÌ¼Ç 24
ÇÔ¼ö ºí·ÏÀÇ »ç¿ë 29
Â÷ºÐ¹æÁ¤½Ä(difference equation)ÀÇ ¸ðµ¨¸µ 34
Subsystem(ºÎ½Ã½ºÅÛ)ÀÇ ±¸¼º 37
Á¦ 2Æí : ¿¬±¸³í¹®
Design of Distributed Engine Control Systems with Uncertain Delay
1. Introduction 47
2. Simulation Examples 54
3. Numerical simulation 56
4. Conclusions and Future Work 59
5. References 63