ÄÜÅÙÃ÷ »ó¼¼º¸±â
Ä®¸¸ÇÊÅÍ EEG º¸ÇàµðÄÚµùÀ» À§ÇÑ ½Å°æ¸Á°ú ±â°èÇнÀÀ» ÅëÇÑ ¾Ë°í¸®Áò ¿¬±¸


Ä®¸¸ÇÊÅÍ EEG º¸ÇàµðÄÚµùÀ» À§ÇÑ ½Å°æ¸Á°ú ±â°èÇнÀÀ» ÅëÇÑ ¾Ë°í¸®Áò ¿¬±¸

Ä®¸¸ÇÊÅÍ EEG º¸ÇàµðÄÚµùÀ» À§ÇÑ ½Å°æ¸Á°ú ±â°èÇнÀÀ» ÅëÇÑ ¾Ë°í¸®Áò ¿¬±¸

,< Trieu Phat Luu>,< Yongtian He>,< Akshay Sujatha Ravindran & Jose L. Contreras-Vidal | ¾ÆÁø

Ãâ°£ÀÏ
2020-07-22
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
18 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

Pre-processing pipelines for different offline experiments
are represented in Fig. 1. The base pipeline is selected such that they can easily be used in an online real-time
decoding scheme18. An H-infinity algorithm was used to specifically remove eye blinks, eye motions, amplitude
drifts and recording biases simultaneously23. The parameters of the H-infinity algorithms were kept the same as
the real-time decoding. Peripheral channels were removed as they typically contain many artifactual components.
The signals were then bandpass filtered using a 4th order butterworth filter. Although the frequency range was the
same, this is one of the differences compared to the real-time decoding as the real-time implementation utilized
finite impulse filter and the phase shift was expected. To this point, all processing was done through a MATLAB
script, which is also provided in the open-sourced repository. Additionally, before each experiment, the signals
were z-scored for each channel

¸ñÂ÷

Á¦ 1Æí : MATLAB ±âº»Æí
1. MATLAB ±âº»»ç¿ëÆí 003
1.1 MATLAB ½ÃÀÛÇϱâ 003
¸í·Éâ(command Window)¿¡¼­ÀÇ ÀÔ·Â 005
µµ¿ò¸»(Help)ÀÇ ÀÌ¿ë 007
1.2 ÀÔ·Â ¿À·ùÀÇ ¼öÁ¤ 008
°è»êÀÇ ÁßÁö 009
MATLAB Á¾·áÇϱâ 009
1.3 ¿¬»ê°ú º¯¼öÀÇ ÇÒ´ç 009
¿¬»êÀÚ ¿ì¼±¼øÀ§ 011
³»ÀåÇÔ¼ö 012
1.4 µ¥ÀÌÅÍÀÇ Ç¥Çö 013
1.5 º¯¼öÀÇ Ã³¸® 015
º¯¼ö À̸§ 015
clear ¸í·É¾î 016
Ư¼öº¯¼ö¿Í Á¤¼ö 017
whos ¸í·É¾î 017
1.6 º¤ÅÍ¿Í Çà·Ä 018
º¤ÅÍ 018
Çà·Ä 023
½ºÅ©¸° Ãâ·Â°ú ¾ïÁ¦ 024
1.7 ·£´ý(Random)¼ö¿Í º¹¼Ò¼ö 025
·£´ý ¼ö 025
º¹¼Ò¼ö 027
1.8 ±âÈ£¸¦ ÀÌ¿ëÇÑ ¿¬»ê 028
±âÈ£½Ä¿¡¼­ÀÇ Ä¡È¯ 029
1.9 ÄÚµå ÆÄÀÏ 030
½ºÅ©¸³Æ® ÄÚµå ÆÄÀÏ 030
ÄÚ¸àÆ®ÀÇ Ãß°¡ 032
ÇÔ¼ö ÄÚµå ÆÄÀÏ 033
»ç¿ëÀÚ Á¤ÀÇÇÔ¼ö 036
1.10 °£´ÜÇÑ ±×·¡ÇÁÀÇ »ý¼º 037
ezplotÀ» ÀÌ¿ëÇÑ ±×·¡ÇÁ 037
plotÀ» ÀÌ¿ëÇÑ ±×·¡ÇÁ 039
3Â÷¿ø ±×·¡ÇÁ 042
1.11 MATLAB°ú ¿¢¼¿(Excel)ÀÇ Á¢¼Ó 043
¿¢¼¿ µ¥ÀÌÅÍ ºÒ·¯¿À±â 043
µ¥ÀÌÅÍ °¡Á®¿À±â ¿É¼Ç 046
½ºÅ©¸³Æ® »ý¼º ¿É¼Ç 049
ÇÔ¼ö »ý¼º ¿É¼Ç 049
»ý¼ºµÈ µ¥ÀÌÅ͸¦ ¿¢¼¿ÆÄÀÏ·Î ÀúÀåÇϱâ 050







Á¦ 2Æí : ¿¬±¸³í¹®
An empirical comparison of neural networks and machine learning
algorithms for EEG gait decoding

1. Introduction 51
2. Methods 52
3. Results 56
4. Discussion 64
5. References 66