±âÇÏÇÐÀÇ Ã¶Çп¡ ±â¿©ÇÏ´Â ¼öÇÐÀÇ ±âÃÊ Ã¥.The Book of The Foundations of Mathematics,A Contribution to the Philosophy of Geometry. by Paul Carus
À¯Å¬¸®µå ±âÇÏÇп¡¼ ¸®¸¸ ,°¡¿ì½º µî µî ¼öÇÐÀÚµéÀ» ±â¼úÇÏ°í, °ú°Å·ÎºÎÅÍ »ç¶÷ÀÌ »ý°¢ÇÏ´Â ¼öÇÐÀº ±âÇÏÇÐÀÌ ¼öÇп¡ ±âÃʵÊÀ» ±â¼ú. ³»¿ëÀº ¸ñÂ÷¹× º»¹®À» È®ÀÎ.
THE FOUNDATIONS OF
MATHEMATICS
A CONTRIBUTION TO
THE PHILOSOPHY OF GEOMETRY
BY
DR. PAUL CARUS
CHICAGO
THE OPEN COURT PUBLISHING CO.
LONDON AGENTS
KEGAN PAUL, TRENCH TRUBNER & CO., LTD.
¡§
1908
±âÇÏÇÐÀÇ Ã¶Çп¡ ±â¿©ÇÏ´Â ¼öÇÐÀÇ ±âÃÊ Ã¥.The Book of The Foundations of Mathematics,A Contribution to the Philosophy of Geometry. by Paul Carus
TABLE OF CONTENTS.
the search for the foundations of geometry:
historical sketch.
PAGE
Axioms and the Axiom of Parallels . . . . . . . . . . . . . 1
Metageometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Precursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Gauss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Riemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Lobatchevsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Bolyai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Later Geometricians . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Grassmann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Euclid Still Unimpaired. . . . . . . . . . . . . . . . . . . . . . . . . 32
the philosophical basis of mathematics.
PAGE
The Philosophical Problem . . . . . . . . . . . . . . . . . . . . . 36
Transcendentalism and Empiricism . . . . . . . . . . . . . 39
The A Priori and the Purely Formal . . . . . . . . . . . . 41
Anyness and its Universality . . . . . . . . . . . . . . . . . . . . 46
Apriority of Different Degrees. . . . . . . . . . . . . . . . . . . 49
Space as a Spread of Motion . . . . . . . . . . . . . . . . . . . . 56
Uniqueness of Pure Space. . . . . . . . . . . . . . . . . . . . . . . 61
Mathematical Space and Physiological Space. . . . 63
Homogeneity of Space Due to Abstraction . . . . . . 66
Even Boundaries as Standards of Measurement . 69
The Straight Line Indispensable . . . . . . . . . . . . . . . . 72
The Superreal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Discrete Units and the Continuum . . . . . . . . . . . . . . 77
mathematics and metageometry.
Different Geometrical Systems . . . . . . . . . . . . . . . . . . 81
Tridimensionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Three a Concept of Boundary. . . . . . . . . . . . . . . . . . . 86
Space of Four Dimensions. . . . . . . . . . . . . . . . . . . . . . . 88
The Apparent Arbitrariness of the A Priori . . . . . 94
Definiteness of Construction . . . . . . . . . . . . . . . . . . . . 97
PAGE
One Space, but Various Systems of Space Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Fictitious Spaces and the Apriority of all Systems
of Space-Measurement . . . . . . . . . . . . . . . . . 107
Infinitude. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Geometry Remains A Priori . . . . . . . . . . . . . . . . . . . . 116
Sense-Experience and Space . . . . . . . . . . . . . . . . . . . . 120
The Teaching of Mathematics. . . . . . . . . . . . . . . . . . . 125
EPILOGUE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135