¹Ì±¹ ¹öÁö´Ï¾Æ ¼öÇÐÇпø ¿øÀå ¹× °»ç·Î¼ ÇöÀå¿¡¼ 20³â ÀÌ»ó ÇлýµéÀ» ÁöµµÇÏ´Â µ¿¾È ¼ö¸¹Àº ±³À縦 ¿¬±¸Çß°í ºÐ¼®ÇÏ¿© AP Calculus AB/BC¸¦ ¼ö°ÇÏ´Â ÇлýµéÀÌ ÁÁÀº ¼ºÀûÀ» ¹Þµµ·Ï µµ¿òÀ» ÁÖ¾ú½À´Ï´Ù. ÇÏÁö¸¸, Ç×»ó ¾ÈŸ±õ°Ô »ý°¢ ÇÏ´Â ÀÖ´ø °ÍÀº À¯¸íÇÑ ÃâÆÇ»çÀÇ ±³ÀçµéÀ̶ó ÇÒÁö¶óµµ ½ÇÁ¦ ½ÃÇè ÃâÁ¦ °æÇâÀÌ ³ª ½ºÅ¸ÀÏ°ú Â÷ÀÌ°¡ ÀÖ´Â °æ¿ìµéµµ °£È¤ º¸ÀÌ°í ÅξøÀÌ ºÎÁ·ÇÑ °³³ä¼³¸í°ú ¹® Á¦ ³À̵µ·Î ÀÎÇؼ ÁøÁ¤À¸·Î ÇлýµéÀÇ ¼öÇнǷ Çâ»ó¿¡ µµ¿òÀ» ÁÖÁö ¸øÇÑ´Ù´Â °ÍÀÔ´Ï´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ÀûÀýÇÑ ´ë¾ÈÀÌ ¾ø¾î¼ ±× ±³ÀçµéÀ» »ç¿ëÇÏ¿© ÇлýµéÀ» ÁöµµÇØ¾ß ÇÑ´Ù´Â ´ä´äÇÔÀÌ ÀÖ¾ú½À´Ï´Ù. ¸¶À½¼Ó¿¡ ÀÖ´ø ÀÌ·¯ÇÑ ¾ÈŸ±î¿òÀº ÁÁÀº ±³À縦 ¸¸µé¾î º¸ÀÚ´Â ¿ë±â·Î ¹Ù²î¾î ÁýÇÊÀ» ½ÃÀÛÇÏ°Ô Çß°í, ¿Â/¿ÀÇÁ¶óÀÎÀÇ ¸¹Àº Áöµµ°æÇèÀ» ÅëÇØ ¾òÀº ÀÌÇØÇϱ⠽¬¿î °³³ä¼³¸í°ú ÇÙ½ÉÆ÷ÀÎÆ®¸¦ ±³Àç¿¡ ¼Ò°³ÇÑ´Ù´Â ¸ñÇ¥¸¦ °¡Áö°í ³ë·ÂÇÑ °á°ú ÁýÇÊÀ» ¸¶Ä¥ ¼ö ÀÖ¾ú½À´Ï´Ù. ÀÌ Ã¥Àº ¹æ´ëÇÑ AP Calculus AB/BCÀÇ ÅäÇȵéÀ» 45°³ÀÇ ·¹½¼À¸·Î ¼¼ºÐÈÇÑ °ÍÀÔ´Ï´Ù. óÀ½ 28°³ÀÇ ·¹½¼Àº AP Calculus AB¿Í AP Calculus BCÀÇ °øÅë ÅäÇȵéÀÌ°í, ³ª¸ÓÁö 17°³ÀÇ ·¹½¼Àº AP Calculus BCÀÇ ÅäÇȵé·Î ³ª´¹´Ï´Ù. °¢°¢ ÀÇ ·¹½¼¿¡´Â ½±°Ô ÀÌÇØÇÒ ¼ö ÀÖ´Â °³³ä¼³¸í°ú 5~10°³ÀÇ ¿¬½À¹®Á¦¸¦ ÅëÇؼ ÇÐ »ýµéÀÌ ÇÙ½ÉÆ÷ÀÎÆ®¸¦ ÀÌÇØÇÒ ¼ö ÀÖµµ·Ï ±¸¼ºÇß½À´Ï´Ù. ÀÌ Ã¥Àº ¹Ì±¹ ¹× Çѱ¹ÀÇ Çпø±³Àç¿Í 1:1 °³ÀÎÁöµµ ±³Àç·Î ±âȹµÇ¾î ¹Ì±¹¿¡ ¼ ¸ÕÀú ÃâÆÇÇÏ¿´À¸¸ç, ¹Ì±¹ ¾Æ¸¶Á¸´åÄÄ¿¡¼´Â ½ºÅ׵𼿷¯·Î ÇлýµéÀÇ Àα⸦ ¾ò°í ÀÖ½À´Ï´Ù. µ¿½Ã¿¡ À¯ÇÐÀü¹® ÀÎÅÍ³Ý °ÀÇ »çÀÌÆ®ÀÎ ¸¶½ºÅÍÇÁ·¾(www. masterprep.net)¿¡¼ AP Calculus AB ¿Í AP Calculus BCÀÇ ±³Àç·Î »ç¿ëµÇ°í ÀÖÀ¸¸ç ÇлýµéÀÇ ÁÁÀº ¹ÝÀÀÀ¸·Î ¼öÇÐ ±³À°ÀÚÀÇ ÇÑ »ç¶÷À¸·Î¼ º¸¶÷À» ´À³¢°í ÀÖ½À´Ï´Ù. Ã¥ÀÇ ±âȹ Àǵµ»ó ±³Àç¿¡´Â Answer keys¸¸ Æ÷ÇԵǾî ÀÖ°í »ó¼¼ÇÑ Ç®ÀÌ ´Â Æ÷ÇÔµÇÁö ¾Ê¾Ò½À´Ï´Ù. ÀÚ¼¼ÇÑ Ç®À̸¦ ¿øÇÏ´Â ÇлýµéÀº ÁöµµÇϽô ¼±»ý´Ô²² µµ¿òÀ» ¿äûÇϽðųª ¸¶½ºÅÍÇÁ·¾ÀÇ ÀÎÅÍ³Ý °ÀǸ¦ µè´Â °ÍÀ» ÃßõÇÕ´Ï´Ù.
¹Ì±¹ ¹öÁö´Ï¾ÆÀÇ No.1 ¼öÇÐÀü¹® ÇпøÀÎ ¼Ö·Î¸ó Çпø(Solomon Academy)ÀÇ ´ëÇ¥ÀÌÀÚ ¼ÒÀ§ ¸»ÇÏ´Â 1Ÿ ¼öÇÐ °»çÀÌ´Ù. ¹öÁö´Ï¾Æ¿¡ À§Ä¡ÇÑ ¸í¹® Å丶½º Á¦ÆÛ½¼ °úÇаí(Thomas Jefferson High School for Science & Technology) ¹× ¹öÁö´Ï¾Æ ÁÖÀÇ À¯¸íÇÑ »ç¸³, °ø¸³Çб³ÀÇ ¼ö ¸¹Àº ÇлýÀ» ÁöµµÇÏ¸é¼ ¸í¼ºÀ» ½×¾Ò°í ÁÁÀº °á°ú·Î ÀÔ¼Ò¹®ÀÌ ³ª ÀÖ´Ù. ±×ÀÇ ¼ö¸¹Àº Á¦ÀÚµéÀÌ Harvard, Yale, Princeton, MIT, Columbia, Stanford ¿Í °°Àº ¾ÆÀ̺ñ¸®±× ¹× ¿©·¯ ¸í¹® ´ëÇб³¿¡ ÀÔÇÐÇÏ¿´À» »Ó¸¸ ¾Æ´Ï¶ó, ÁßÇб³ ¼öÇаæ½Ã´ëȸÀÎ MathCounts¿¡¼´Â ¹öÁö´Ï¾Æ ÁÖ ´ëÇ¥ 5¸í Áß¿¡ 3¸íÀÌ ¹Ù·Î ¼±»ý´ÔÀÇ Á¦ÀÚ¶ó´Â Á¡°ú, ÁöµµÇÑ ´Ù¼öÀÇ ÇлýµéÀÌ ¹Ì±¹ °í ±³ ¼öÇаæ½Ã´ëȸÀÎ AMC, AIME¸¦ °ÅÃÄ USAMO¿¡ ÀÔ»óÇÑ »ç½ÇµéÀº ¼±»ý´ÔÀÇ Áöµµ¹æ½Ä°ú ´É·ÂÀ» ÀÔÁõÇÏ°í ÀÖ´Ù. ÇöÀç ¹Ì±¹°ú Çѱ¹À» ¿À°¡¸é¼ °ÀÇÇÏ°í ÀÖÀ¸¸ç, Çѱ¹¿¡¼´Â SAT Àü¹® Çпø¿¡¼ÀÇ °ÀÇ¿Í ´õºÒ¾î No.1 À¯ÇÐÀü¹® ÀÎÅÍ³Ý °ÀÇ »çÀÌÆ®ÀÎ ¸¶½º ÅÍÇÁ·¾(www.masterprep.net)¿¡¼ SAT 2 Math Level 2 °ÀǸ¦ ½ÃÀÛÀ¸·Î AP Calculus¿Í ±× ¿ÜÀÇ ´Ù¸¥ ¼öÇÐ °ú¸ñÀ» ¿µ¾î ¹öÀü°ú Çѱ¹¾î ¹öÀüÀ¸·Î °ÀÇÇÏ°í ÀÖ´Ù.
¾Æ¸¶Á¸´åÄÄ(www.amazon.com)¿¡¼ ¹Ì±¹¼öÇÐÀü¹® ±³ÀçÀÇ ½ºÅ׵𼿠·¯ ÀúÀÚÀ̱⵵ ÇÑ ¼±»ý´ÔÀº SAT 2 Math Level 2, SAT 1 Math, SHSAT/ TJHSST Math workbook, IAAT¿Í AP Calculus AB & BC µî ´Ù¼öÀÇ Ã¥À» ÃâÆÇÇÏ¿´°í, Áö±Ýµµ ¿©·¯ ¼öÇÐÃ¥À» ÁýÇÊ ÁßÀ̸ç Çѱ¹¿¡¼µµ Áö¼ÓÀûÀ¸·Î ¼±»ý´ÔÀÇ Ã¥ÀÌ ½Ã¸®Áî·Î ¼Ò°³µÉ ¿¹Á¤ÀÌ´Ù.
LESSON 1 The Limit of a Function...................................................... 11
LESSON 2 Calculating Limits Using the Properties of Limits....................... 17
LESSON 3 Limits at Infinity.............................................................. 23
LESSON 4 Continuity...................................................................... 30
LESSON 5 Average Rate of Change and Instantaneous Rate of Change.......... 36
LESSON 6 Derivatives..................................................................... 43
LESSON 7 Differentiation Rules......................................................... 48
LESSON 8 Differentiation Rules......................................................... 54
LESSON 9 The Chain Rule............................................................... 60
LESSON 10 Implicit Differentiation...................................................... 66
LESSON 11 Derivatives of Inverse Trig Functions and Higher Derivatives....... 72
LESSON 12 Indeterminate Forms And L¡¯Hospital¡¯s Rule.............................. 79
LESSON 13 Related Rates.................................................................. 86
LESSON 14 Linear Approximations And Differentials................................ 92
LESSON 15 Maximum And Minimum Values........................................... 99
LESSON 16 The Mean Value Theorem And Rolle¡¯s Theorem........................ 106
LESSON 17 Understanding A Curve From The First And Second Derivatives.... 111
LESSON 18 Optimization Problems...................................................... 118
LESSON 19 Indefinite Integrals........................................................... 123
LESSON 20 The Definite Integral......................................................... 129
LESSON 21 Numerical Approximations Of Integration............................... 135
LESSON 22 The Fundamental Theorem Of Calculus.................................. 141
LESSON 23 The U-Substitution Rule..................................................... 148
LESSON 24 Area Between Curves........................................................ 155
LESSON 25 Average Value Of A Function and Arc Length........................... 161
LESSON 26 Volumes Of Solids Of Revolution.......................................... 166
LESSON 27 Volumes Of Solids Of Cross-Sections..................................... 174
LESSON 28 Differential Equations....................................................... 181
LESSON 29 Logarithmic Differentiation................................................. 191
LESSON 30 Indeterminate Products and Indeterminate Powers.................... 196
LESSON 31 Derivative And Arc Length Of Parametric Equations................... 203
LESSON 32 Volumes By Cylindrical Shells.............................................. 209
LESSON 33 Integration By Parts.......................................................... 217
LESSON 34 Trigonometric Integrals...................................................... 223
LESSON 35 Integration By Partial Fractions............................................ 229
LESSON 36 Improper Integrals........................................................... 235
LESSON 37 Differential Equations....................................................... 241
LESSON 38 Derivative, Arc Length, And Area With Polar Coordinates............ 249
LESSON 39 Sequences...................................................................... 257
LESSON 40 Convergence And Divergence Of Series, Part I......................... 262
LESSON 41 Convergence And Divergence Of Series, Part II........................ 271
LESSON 42 Strategy For Testing Series.................................................. 278
LESSON 43 Power Series................................................................... 284
LESSON 44 Representations Of Functions As Power Series......................... 290
LESSON 45 Taylor And Maclaurin Series................................................ 296