ÄÜÅÙÃ÷ »ó¼¼º¸±â
ÆÄÀ̽㠵ö·¯´× ÆÄÀÌÅäÄ¡ (Python Deep Learning PyTorch)


ÆÄÀ̽㠵ö·¯´× ÆÄÀÌÅäÄ¡ (Python Deep Learning PyTorch)

ÆÄÀ̽㠵ö·¯´× ÆÄÀÌÅäÄ¡ (Python Deep Learning PyTorch)

<ÀÌ°æÅÃ>,<¹æ¼º¼ö>,<¾È»óÁØ> °øÀú | Á¤º¸¹®È­»ç

Ãâ°£ÀÏ
2020-11-27
ÆÄÀÏÆ÷¸Ë
ePub
¿ë·®
46 M
Áö¿ø±â±â
PC½º¸¶Æ®ÆùÅÂºí¸´PC
ÇöȲ
½Åû °Ç¼ö : 0 °Ç
°£·« ½Åû ¸Þ¼¼Áö
ÄÜÅÙÃ÷ ¼Ò°³
ÀúÀÚ ¼Ò°³
¸ñÂ÷
ÇÑÁÙ¼­Æò

ÄÜÅÙÃ÷ ¼Ò°³

ÆÄÀ̽ãÀº ¼±ÅÃÀÌ ¾Æ´Ñ Çʼö! ÆÄÀÌÅäÄ¡·Î µö·¯´× ÀÔ¹®Çϱâ!

µö·¯´× ±â¼ú¿¡ ÃÊÁ¡À» µÎ°í µö·¯´×À» ±¸ÇöÇϱâ À§ÇØ ÆÄÀ̽ãÀ» ÀÌ¿ëÇϴµ¥, ¸Ó½Å·¯´× ¶óÀ̺귯¸®ÀÎ ÆÄÀÌÅäÄ¡¸¦ È°¿ëÇÏ¿© ´Ù¾çÇÑ ÅÙ¼­¸¦ Áö¿øÇÏ´Â ¹æ¹ýÀ» ¾Ë¾Æº»´Ù. ÆÄÀÌÅäÄ¡´Â ÆÄÀ̽ã ÄÚµù°ú ºñ½ÁÇϱ⠶§¹®¿¡ ¾ð¾î°¡ ¾î·ÆÁö ¾Ê´Ù. Äڵ尡 °£°áÇÏ°í ³­À̵µ°¡ ³·¾Æ ÅÙ¼­Ç÷ο캸´Ù »ç¿ëÇϱâ ÈξÀ ½±´Ù´Â Ư¡ÀÌ ÀÖ´Ù. ÇÁ·Î±×·¡¹Ö ¾ð¾îÀÇ ±âº»Àû ¼öÁظ¸ °®Ãß°í ÀÖ´Ù¸é °í±Þ ½ºÅ³ÀÌ ¾ø¾îµµ Äڵ带 ÀÛ¼ºÇغ¸¸ç Á÷Á¢ ½ÇÇàÇغ¼ ¼ö ÀÖµµ·Ï ±¸¼ºÇÏ¿´±â ¶§¹®¿¡ Àǹ̸¦ Á¤È®ÇÏ°í °³³äÀ» ÀÌÇØÇÒ ¼ö ÀÖ´Ù.

ÇнÀÀ» ½ÃÀÛÇϱâ Àü ±âº»ÀûÀÎ ³»¿ë°ú ÄÚµå ÀÛ¼ºÀ» À§ÇÑ ½Ã½ºÅÛ È¯°æ ±¸ÃàºÎÅÍ ½ÃÀÛÇÏ¿©, ¿äÁò ½±°Ô µé¸®´Â ¸Ó½Å·¯´×, µö·¯´×, ÀΰøÁö´É µîÀÇ °³³äÀ» ½±°Ô ¼³¸íÇÏ°í È°¿ë ºÐ¾ßµµ ¾Ë¾Æº»´Ù. ƯÈ÷ Áß°£ Áß°£ ¿¹Á¦¸¦ ¼ö·ÏÇÏ¿© ÄÚµå¿Í ¼³¸íÀ» ÀÚ¼¼ÇÏ°Ô ¼³¸íÇϱ⠶§¹®¿¡ Ãʺ¸Àڵ鵵 ½±°Ô Á¢±ÙÇÒ ¼ö ÀÖ´Ù´Â ÀåÁ¡ÀÌ ÀÖ´Ù. Äڵ带 µû¶óÇϱâ À§ÇÑ ½Ç½À ÆÄÀÏ ´Ù¿î·Îµå´Â Á¤º¸¹®È­»ç ȨÆäÀÌÁö(infopub.co.kr) ÀÚ·á½Ç¿¡¼­ °¡´ÉÇϸç, ÇнÀ Áß ±Ã±ÝÇÑ »çÇ×Àº ÀúÀÚÀÇ github.com/Justin-A/DeepLearning101/issues¿¡¼­ Çǵå¹é °¡´ÉÇÏ´Ù.

ÀúÀÚ¼Ò°³

¼º±Õ°ü´ëÇб³ Åë°èÇаú¸¦ Àü°øÇÏ°í, ºòµ¥ÀÌÅÍ ¿¬ÇÕ ÇÐȸ Åõºò½º¸¦ ¸¸µé¾ú´Ù. ÇöÀç ¿¬¼¼´ëÇб³ »ê¾÷°øÇаú¿¡¼­ ¹Ú»ç°úÁ¤À» ¹â°í ÀÖ´Ù. µ¥ÀÌÅÍ ºÐ¼® ¹× ÀΰøÁö´É °ü·Ã ´ëȸ¿¡¼­ ´Ù¼öÀÇ ¼ö»óÀ» ÇÏ¿´À¸¸ç µ¥ÀÌÅÍ ºÐ¼®°ú ÀΰøÁö´É Àü ºÐ¾ß¿¡ °ü½ÉÀ» °®°í ¿¬±¸ ÁßÀÌ´Ù. ƯÈ÷ µö·¯´×°ú °­È­ÇнÀ¿¡ °ü½ÉÀ» °¡Áö°í ÀÖÀ¸¸ç, ºí·Î±× ¿î¿µ ¹× ´Ù¾çÇÑ °­¿¬ È°µ¿ µîÀ» ÁøÇàÇÏ°í ÀÖ´Ù.

¸ñÂ÷

Part 01 ÆÄÀÌÅäÄ¡ ±âÃÊ
1. ÆÄÀ̽㠶Ǵ ¾Æ³ªÄÜ´Ù ¼³Ä¡Çϱâ
1.1 ÆÄÀ̽㠰ø½Ä ȨÆäÀÌÁö¿¡¼­ ´Ù¿î·ÎµåÇϱâ
1.2 ¾Æ³ªÄÜ´Ù¸¦ ÀÌ¿ëÇØ ÆÄÀ̽㠴ٿî·ÎµåÇϱâ
1.3 °ø½Ä ȨÆäÀÌÁö¿¡¼­ ÆÄÀ̽㠼³Ä¡Çϱâ vs. ¾Æ³ªÄÜ´Ù¸¦ ÀÌ¿ëÇØ ÆÄÀ̽㠼³Ä¡Çϱâ
1.4 °¡»ó ȯ°æ ¼³Á¤Çϱâ
1.5 ÁÖÇÇÅÍ ³ëÆ®ºÏ ¼³Ä¡ ¹× ½ÇÇà
2. CUDA, CuDNN ¼³Ä¡Çϱâ
2.1 CPU vs. GPU
2.2 CUDA ¿ªÇÒ ¹× ¼³Ä¡Çϱâ
2.3 CuDNN ¿ªÇÒ ¹× ¼³Ä¡Çϱâ
2.4 Docker¶õ?
3. ÆÄÀÌÅäÄ¡ ¼³Ä¡Çϱâ
4. ¹Ýµå½Ã ¾Ë¾Æ¾ß ÇÏ´Â ÆÄÀÌÅäÄ¡ ½ºÅ³
4.1 ÅÙ¼­
4.2 Autograd

Part 02 AI Background
1. ÀΰøÁö´É(µö·¯´×)ÀÇ Á¤ÀÇ¿Í »ç·Ê
1.1 ÀΰøÁö´ÉÀ̶õ?
1.2 ÀΰøÁö´ÉÀÇ »ç·Ê
2. ÆÄÀÌÅäÄ¡
3. ¸Ó½Å·¯´×ÀÇ Á¤ÀÇ¿Í Á¾·ù
3.1 ¸Ó½Å·¯´×À̶õ?
3.2 ¸Ó½Å·¯´×ÀÇ Á¾·ù
3.3 ¸Ó½Å·¯´×ÀÇ ±¸ºÐ
3.4 ÁöµµÇнÀ ¸ðµ¨ÀÇ Á¾·ù
4. °úÀûÇÕ
4.1 ÇнÀÇÒ »ùÇà µ¥ÀÌÅÍ ¼öÀÇ ºÎÁ·
4.2 Ç®°íÀÚ ÇÏ´Â ¹®Á¦¿¡ ºñÇØ º¹ÀâÇÑ ¸ðµ¨À» Àû¿ë
4.3 ÀûÇÕ¼º Æò°¡ ¹× ½ÇÇè ¼³°è(Training, Validation, Test , Cross Validation)
5. Àΰø ½Å°æ¸Á
5.1 ÆÛ¼ÁÆ®·Ð
5.2 ½Å°æ¸Á ¸ðÇüÀÇ ´ÜÁ¡
6. ¼º´É ÁöÇ¥

Part 03 Deep Learning
1. µö·¯´×ÀÇ Á¤ÀÇ
2. µö·¯´×ÀÌ ¹ßÀüÇÏ°Ô µÈ °è±â
3. µö·¯´×ÀÇ Á¾·ù
4. µö·¯´×ÀÇ ¹ßÀüÀ» À̲ö ¾Ë°í¸®Áò
4.1 Dropout
4.2 Activation ÇÔ¼ö
4.3 Batch Normalization
4.4 Initialization
4.5 Optimizer
4.6 AutoEncoder(AE)
4.7 Stacked AutoEncoder
4.8 Denoising AutoEncoder(DAE)

Part 04 ÄÄÇ»ÅÍ ºñÀü
1. Convolutional Neural Network(CNN)
2. CNN°ú MLP
3. Data Augmentation
4. CNN Architecture
5. Transfer Learning

Part 05 ÀÚ¿¬¾î ó¸®
1. Data & Task: ¾î¶² µ¥ÀÌÅÍ°¡ ÀÖÀ»±î?
1.1 °¨Á¤ ºÐ¼®(Sentiment Analysis)
1.2 ¿ä¾à(Summarization)
1.3 ±â°è ¹ø¿ª(Machine Translation)
1.4 Áú¹® ÀÀ´ä(Question Answering)
1.5 ±âŸ(etc.)
2. ¹®ÀÚ¸¦ ¼ýÀڷΠǥÇöÇÏ´Â ¹æ¹ý
2.1 Corpus & Out-of-Vocabulary(OOV)
2.2 Byte Pair Encoding(BPE)
2.3 Word Embedding
3. Models
3.1 Deep Learning Models
3.2 Pre-Trained ModelÀÇ ½Ã´ë - Transformer, BERTÀÇ µîÀå
4. Recap
4.1 ?5-3_model_imdb_glove.ipynb¡¯ Äڵ忡 ´ëÇÑ ¼³¸í
4.2 ?5-5_model_imdb_BERT.ipynb¡¯ Äڵ忡 ´ëÇÑ ¼³¸í
4.3 ¸ðµ¨ ¼º´É ºñ±³

Part 06 Other Topics
1. Generative Adversarial Networks(GAN)
2. °­È­ÇнÀ
3. Domain Adaptation
4. Continual Learning
5. Object Detection
6. Segmentation
7. Meta Learning
8. AutoML